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Trade Information, Not Spectrum: A Novel TV
White Space Information Market Model

Yuan Luo, Lin Gao, and Jianwei Huang

Abstract—In this paper, we propose a novel information market
for TV white space networks, where the spectrum database
operator sells the information regarding TV white space to
secondary users. Different from the traditional spectrum market,
the information market processes the unique property of positive
externality, as more users purchasing the information service
will increase the value of the service to each buyer. We system-
atically characterize the market equilibrium and the database
operator’s optimal information pricing strategy. Specifically, we
first study how the market share dynamically evolves over time
and eventually converge to a market equilibrium. We show
that the market equilibrium increases with the initial market
share, and there exist several tipping points of the initial market
share, around which a slight change will lead to a significant
change on the emerging market equilibrium. Based on the
market equilibrium analysis, we further study the impact of
the database operator’s information pricing strategy on the
market equilibrium, and derive the optimal information price
that maximizes the database operator’s revenue. Theoretical
analysis and numerical result indicate that this is a promising
business model for creating incentives for the database operator
in TV white space networks.

I. INTRODUCTION

A. Background and Motivation

TV white space networks [1]–[3] can effectively improve
the TV spectrum efficiency and alleviate the spectrum scarcity,
and thus is a promising approach to solve the spectrum short-
age problem. In a TV white space network, unlicensed wireless
devices (called white space devices, WSDs) opportunistically
exploit the unused or under-utilized channels (called TV white
space, TVWS1) in the broadcast television spectrum band. The
successful deployment of a TV white space network requires
many technical innovations, among which an important one is
to reliably detect the available channel and accurately estimate
the channel quality at different times and locations.

Most early studies on the channel detection and quality
estimation focused on the spectrum sensing technique [4].
However, recent studies [5] pointed out that spectrum sensing
alone is often inefficient, due to the high operational cost as
well as the low detection performance. As an alternative, spec-
trum regulatories (such as FCC in the US and Ofcom in the
UK) advocate the use of a geo-location white space database
[3]. In this database approach, unlicensed WSDs obtain the
channel information via querying a geo-location database,
rather than sensing the wireless environment. Accordingly, the
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1For convenience, we will also refer to TV white space as “TV channel”
or just “channel” in this paper.

database is required to house an up-to-date repository of TV
licensees, and periodically update the channel occupation by
TV licensees. Such a database-assistant TV white space net-
work architecture has also been widely supported by standards
bodies and industrial organizations [6]–[12].

While most prior studies focused on the technical issues
such as the design and deployment of the white space database,
there lacks a proper business model that offers necessary
economic incentives to the database operators.2 Prior studies
related to the business modeling of TV white space network
mainly focused on the spectrum market [13]–[17], where
the database operators, acting as brokers or agents, purchase
channels from the TV licensees, and then sell the purchased
channels to unlicensed WSDs at a relatively higher price.
However, the TV spectrum market model may not be suitable
due to some regulatory considerations. For example, TV white
spaces sometimes are treated as the public spectrum resource
by regulators, whose goal is to make more spectrum available
for public and shared usage. Because of this, the TV spectrum
may not always be traded in the spectrum markets like other
licensed spectrum bands.

To this end, a new business model without involving the
trading of spectrum is desired. Spectrum Bridge, the world’s
first white space database certified by the FCC, proposed an
alternative business model called “White Space Plus” [12]. The
basic idea is to sell certain advanced information regarding TV
channel to WSDs, such that they can choose and operate on
the most desirable channel. An example of such information
is the degree of interference on every TV channel, which may
come from either the nearby TV stations or the unlicensed
WSDs operating on that channel. This essentially leads to an
information market, where WSDs purchase the information
regarding channel quality, instead of purchasing the channel
itself. Clearly, the successful deployment of such an infor-
mation market requires (i) an accurate model to evaluate the
value of information for WSDs (buyers), and (ii) a carefully
designed pricing plan for the database operator. However, none
of these two issues has been considered in the current White
Space Plus.3 This motivates us to study the information market
model for white space databases in this paper.

B. Contributions

In this paper, we model and study an information market for
TV white space network, where the database operator (seller)
sells the following information to WSD users (buyers): the
interference levels on TV channels. We focus on designing the
optimal information pricing plan that maximizes the database

2Such incentives are necessary, for example, for covering the database
operators’ capital expenditure (CapEX) and operational expenditure (OpEX).

3Currently Spectrum Bridge just offers a one year free trial to use this
White Space Plus service [12].
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operator’s revenue. To achieve this, we need to accurately
evaluate the value of information to users, and the users’
reactions under any information price.

Information Value. We propose a general framework for
evaluating the value of information to users. Notice that the
interference on a channel may come from the nearby TV
stations operating on that channel or the nearby WSDs using
that channel. The database can (relatively) precisely predict
the interference from TV stations, as it maintains a repository
of TV licensees. However, it may not be able to predict the
precise interference from WSDs, either because some users
may not want to inform the database their choices of channels,
or simply because some users may interact with another
database in the same area. Therefore, the overall interference
information that the database provides may not be accurate.
This will affect the value of information for WSD users, which
in turn will affect the database operator’s optimal pricing plan.

Market Equilibrium. After characterizing the value of
information to users, we are able to derive the stable market
share (i.e., the percentage of users who purchase information
from the database operator), called the market equilibrium.
In contrast to traditional spectrum markets which are usually
congestion-oriented (i.e., the more users purchasing and using
spectrum, the less value of spectrum for users due to the
potential co-interference among users), we show that the
information market has the nice property of positive externality
[18]–[20]. That is, the more users purchasing the information
from the database, the higher value of the information for
each buyer. This is because when more users purchase the
information and reveal their channel selections to the database
implicitly, the database can predict the interference informa-
tion more accurately.

Due to the positive network externality, the market equi-
librium increases with the initial market share. Interestingly,
there exist several critical points (called tipping points) of the
initial market share, around which a slight change will result in
a significant change on the emerging market equilibrium. Such
a “Small Changes, Big Impact ” [21] phenomenon implies that
the database needs to initialize the market with a large enough
market share, so that the market can eventually evolve to a
desirable market equilibrium. We propose a refund mechanism
to motivate users to purchase the information at the initial
stage, so as to successfully pass the largest tipping point. This
has a similar spirit of the Spectrum Bridge’s current marketing
strategy, which offers one year free trial to use the White Space
Plus service. Finally, based on the market equilibrium analysis,
we derive the optimal information pricing plan that maximizes
the database revenue.

In summary, our main contributions are as follows.
• To the best of our knowledge, this is the first paper

proposing and studying an information market for TV
white space networks. Compared with the spectrum mar-
ket model, this model better satisfies the requirements
from the regulators and the practice of the industry.

• We propose a general framework to evaluate the value
of information to WSD users. This framework consid-
ers both the potential error of the information and the
heterogeneity of users.

• We characterize the positive network externality of the
information market, and study the market equilibrium
systematically. Based on this, we further derive the opti-
mal information pricing plan that maximizes the database
operator’s revenue.

• Theoretical analysis and numerical result indicate that
the database operator can make a significant profit from
such an information market. Thus, this is a promising
business model to give the commercial entities necessary
incentives to operate and maintain white space databases.

The rest of the paper is organized as follows. In Section
II we present the system model. In Sections III and IV, we
analyze the users’ best behaviors and the database operator’s
optimal information pricing plan, respectively. We present the
simulations in Section V, and finally conclude in Section VI.

II. SYSTEM MODEL

We consider a TV white space network, where a set
N = {1, ..., N} unlicensed white space device users (end-
users) operate on idle TV channels requested from a white
space database. Let K , {1, . . . ,K} denote the set of idle
TV channels in the area of the network. Each end-user can
only transmit on one of these channels at any given time.
We consider a time-slotted system (consistent with many TV
white space trial systems [11]), where end-users interact with
the database periodically to obtain the available channel infor-
mation, usually with a period ranging from several minutes to
several hours (e.g., 2 hours suggested by Ofcom [3]).

For each end-user n ∈ N , each channel k is associated
with an interference level, denoted by Zn,k, which reflects the
aggregate interference from all other nearby devices (including
TV stations and other end-users) operating on this channel.
Due to the fast varying nature of wireless channels and
the uncertainty of end-users’ activities, the interference Zn,k
is a random variable. We assume that Zn,k is temporal-
independence and frequency-independence. That is, (i) the
interference Zn,k on channel k is independent identically
distributed (i.i.d.) across time periods, and (ii) the interferences
on different channels, Zn,k, k ∈ K, are also i.i.d. in the same
time period. 4 As we are talking about a general WSD n, we
will omit the WSD index n in the notations (e.g., write Zn,k
as Zk), whenever there is no confusion caused. Let FZ(·)
and fZ(·) denote the cumulative distribution function (CDF)
and probability distribution function (PDF) of Zk, ∀k ∈ K.

White Space Database. According to the regulator’s ruling
(e.g., FCC [1]), a white space database needs to provide the
following information to end-users: (i) the list of all available
TV channels, (ii) the maximum transmission power on every
channel, and (iii) some other optional requirements. This is
the basic service that every database is required to provide to
any interested user free of charge.

Beyond the basic service, the database can also provide
an advanced service to make profit, under the constraint that
it does not conflict with the basic service. Motivated by the
practice of Spectrum Bridge [12], we consider such a scenario

4Note that the i.i.d. assumption is a reasonable approximation of the
practical scenario, where all channel quality distributions are the same but
the realized instant qualities of different channels are different (e.g., [22]).
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where the database provides the interference level Zk of every
available channel k to those end-users who subscribe to this
advanced service5. With this advanced information, end-users
are able to pick and operate on the best available channel.
Accordingly, the database will charge a subscription fee (de-
noted by π) for such an advanced service. This constitutes an
information market.

White Space Device Users (End-Users). Basically, after
obtaining the available channel list through the free basic
service, each end-user has 3 choices (denoted by l) in terms
of channel selection: (i) l = a: subscribing to the advanced
service and pick the channel with the minimum interference,
(ii) l = s: sensing the available channels to figure out the best
one, or (iii) l = b: randomly choosing a channel from the list
of available channels. Different choices may bring different
benefits and incur different costs for/on end-users.

We assume that each end-user is rational, and will choose
the strategy that maximizes its payoff. The payoff of an end-
user is defined as the difference between (i) the benefit (utility)
achieved from transmitting data on the selected channel, and
(ii) the subscription fee (if choosing to subscribe to the
advanced service) or the sensing cost (if choosing to sense
the channels). We consider heterogeneous end-users, where
different end-users value the same data transmission rate or
utility differently (due to different wireless applications). Let θ
denote an end-user’s evaluation for its achieved utility. For the
analytical convenience, we assume θ is uniformly distributed
in [0, 1]. The payoff of a type-θ end-user is defined as:

ΠEU =


θ · g

(
R[b]

)
, if l = b,

θ · g
(
R[s]

)
− c, if l = s,

θ · g
(
R[a]

)
− π, if l = a,

(1)

where R[l] denotes the expected data rate when the end-user
chooses a strategy l ∈ {b, s,a}, and g(·) is the utility function
of end-user, which is a concavely increasing function of R[l].
Here we assume that all end-users have the same sensing cost
c when l = s, and are charged by the same price π when
l = a. In other words, the database is not allowed to engage
in either QoS discrimination or price discrimination for the
simplicity of practical implementation. Let us further assume
that there is no sensing error.6 Then, the end-user’s expected
data rates under the strategies l = b (random selection) and
l = s (sensing) can be computed by:

R[b] = EZ [r(Z)] =
∫
z
r(z)dFZ(z),

R[s] = EZ(1)

[
r
(
Z(1)

)]
=
∫
z
r(z)dFZ(1)

(z),
(2)

where Z(1) , min{Z1, ..., ZK} denotes the minimum in-
terference on all channels, FZ(1)

(z) = [1 − FZ(z)]K is the
CDF of Z(1), and r(·) is the transmission rate function (e.g.,
the Shannon capacity). It is important to note that the end-
user’s expected data rate R[a] under the strategy l = a
(subscribing to the advanced service) depends on the accuracy
of the advanced information the database offers. Intuitively,
we have: (i) R[a] = R[s] in the extreme case that the
database’s information is fully accurate, and (ii) R[a] = R[b]

5“Subscribe to the advanced service” is used throughout this paper to mean
an end-user’s behavior of purchasing the advanced information.

6Our analysis can be directly applied to the case with sensing error [23].

in another extreme case that the database does not have any
accurate information regarding the interferences. However, in
the general case where the database’s information is partially
accurate, R[a] is generally different from R[s] and R[b]. We
will provide the detailed characterization of R[a] in (7) after
we define the accuracy of the database’s information.

Interference Level (Information). For a particular end-
user, its experienced interference Zk on a channel k is the
aggregate interference from all other (nearby) devices operat-
ing on channel k, and usually consists of three components:

1) Uk: the interference from licensed TV stations;
2) Wk,m: the interference from another end-user m oper-

ating on the same channel k;
3) Vk: any other interference from outside systems.

The total interference on channel k is Zk = Uk + Wk + Vk,
where Wk ,

∑
m∈Nk

Wk,m is the total interference from
all other end-users operating on channel k (denoted by Nk).
Similar to Zk, we assume that Uk,Wk,Wk,m, and Vk are ran-
dom variables with temporal-independence (i.e., i.i.d. across
time periods) and frequency-independence (i.e., i.i.d. across
channels). We further assume that Wk,m is user-independence,
i.e., Wk,m,m ∈ Nk, are i.i.d. Let FU (·), FW (·), and FV (·)
denote the CDFs of Uk,Wk,m, and Vk, respectively. It is
important to note that different end-users may experience
different interferences Uk (from TV stations), Wk,m (from
another end-user), and Vk (from outside systems) on a
channel k, as we have omitted the end-user index n for all
these notations for clarity.

Next let us discuss the above interference components more
detailedly. First, based on the knowledge about the location
and channel occupancy of TV stations, the database is able to
compute the interference Uk from TV stations to a particular
end-user (on channel k). Second, due to the lack of outside
interference source information, the database cannot compute
the interference Vk from outside systems accurately. Thus, the
information about Vk will not be included in the database’s
advanced information sold to end-users, which reduces the
accuracy of the database’s advanced information. Third, the
computation of the interference Wk,m from another end-user
m (operating on channel k) is more complicated. Notice that
the database knows precisely the location information of every
end-user who requests TV channels (as end-users are manda-
torily required to report their location information [1], [2]).
Thus, the database can precisely compute the interference of
one end-user to another one, if it is able to get the operational
channels of end-users. However, the database may or may not
know the exact channel selection of an end-user, depending on
whether the end-user subscribes to the advanced service or not.
Specifically, if an end-user subscribes to the advanced service,
the database can predict the end-user’s channel selection,
since the end-user is fully rational and will always choose
the channel with the minimum interference level indicated
by the database (in the advanced service). However, if an
end-user does not subscribe, the database cannot predict its
channel selection, since the end-user’s sensing result may not
be the same as that provided from the database’s advanced
information (due to the missing of Vk in the database’s
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information as we explained above), or the end-user may even
choose a channel randomly.

Let Nk[a] denotes the set of end-users (operating on chan-
nel k) subscribing to the advance service, and Nk[x] de-
notes those not subscribing to the advance service. That is,
Nk[a]

⋂
Nk[x] = ∅ and Nk[a]

⋃
Nk[x] = Nk. Then, for a

particular channel k, the interference known by the database
(and thus will be included in its advanced information) is

Xk , Uk +
∑
m∈Nk[a]

Wk,m. (3)

The interference not known by the database (and thus will not
be included in its advanced information) is

Yk , Vk +
∑
m∈Nk[x]

Wk,m. (4)

Thus, the total interference level on channel k is

Zk , Xk + Yk = Uk + Vk +
∑
m∈Nk

Wk,m. (5)

Obviously, Yk and Xk are also random variables with
temporal-independence and frequency-independence. Since
the database knows only Xk, it will provide this information
as the advanced service to end-users. It is easy to see that
the more end-users subscribing to the advanced service, the
more information the database can provide (and thus the more
accurate the database’s information will be).

Based on the above, we can characterize the accuracy of
the database’s information under different number of end-
users subscribing to the advanced service. Let η denote the
percentage of end-users subscribing to the advanced service,
called the market share of the database. By the assumption of
the frequency independence of Zk (i.e., the total interferences
on different channels Zk, k ∈ K are i.i.d.)7, each end-user
will be “assigned” to each channel with an equal probability.8

Therefore, there are, on average, N
K end-users operating on

each channel k, with N
K · η end-users subscribing to the

advanced service and N
K · (1 − η) end-users not subscribing

to the advanced service. That is, |Nk| = N
K , |Nk[a]| = N

K · η,
and |Nk[x]| = N

K · (1 − η).9 Then, by (3) and (4), we can
immediately obtain the distributions of Xk and Yk under any
given market share η.

Information Value. Now we evaluate the value of
database’s information {Xk}k∈K to end-users, which is re-
flected by the end-user’s benefit (i.e., the utility g(·) in Eq. (1))
that can be achieved from utilizing this information.

We first consider an end-user’s utility without this informa-
tion (i.e., when not subscribing to the advanced service). In this
case, end-users can decide either to randomly select a channel
(l = b), or to sense all channels for the best one (l = s). The

7This assumption is used for analysis convenience. Note that the actual
distribution depends on the users’ subscription behaviors. The more detailed
analysis and simulation verifications will be left for our future work.

8Each end-user with the strategy l = s (sensing) will be “assigned” to
each channel with an equal probability (as such end-users will choose the
best channel with the lowest Zk, k ∈ K). Similarly, by the assumption of
the frequency independence of Xk , each end-user with the strategy l = a
(subscribing) will be “assigned” to each channel with an equal probability
(as such end-users will choose the best channel with the lowest Xk, k ∈ K).
Furthermore, each end-user with the strategy l = b (randomly selecting) will
straightforwardly be “assigned” to each channel with an equal probability.

9Note that the above discussion is from the aspect of expectation, and in a
particular time period, the realized numbers of end-users in different channels
may be different.

end-user’s expected utilities under strategies l = b and l = s
are, respectively,

B , g
(
R[b]

)
and S , g

(
R[s]

)
, (6)

where R[b] and R[s] are the respective data rates defined in
(2). Obviously, B and S depend only on the distribution of
the total interference Zk, while not on the specific distributions
of Xk and Yk. This implies that the accuracy of the database’s
information does not affect the utilities of those end-users not
subscribing to the advanced service.

Then we consider an end-user’s expected utility with this
information (i.e., when subscribing to the advance service,
l = a). In this advanced service, the database returns the
interference {Xk}k∈K to end-users, together with the basic
information such as the available channel list. For a rational
end-user, it will always choose the channel with the minimum
Xk (since {Yk}k∈K are i.i.d.). Let X(1) = min{X1, . . . , Xk}
denote the minimum interference provided by the database.
Then, the actual interference experienced by an end-user
can be formulated as a random variable Z[a] = X(1) + Y .
Accordingly, the end-user’s expected data rate and utility are

R[a] = EZ[a]

[
r
(
Z[a]
) ]

=
∫
z
r(z)dFZ[a](z),

A , g
(
R[a]

)
,

(7)

where FZ[a](z) is the CDF of Z[a]. It is easy to see that both
R[a] and A in (7) depend on the distributions of both Xk

and Yk, and thus depend on the market share η. Therefore,
we will also write A as A(η). We can further check that A(η)
increases with η, which shows that the information market has
the property of positive network externality. This is because
the more end-users subscribing to the advanced service, the
more accurate the database’s information is, and further the
more benefit for the end-users subscribing to the advanced
service. We further assume that A(η) is concave in η, which
is verified by simulations.

By (6)–(7), we can find the following useful properties.

Proposition 1.
• B and S in (6) do not depend on η;
• A(η) in (7) monotonously increases with η;
• B ≤ A(η) ≤ S, ∀η ∈ [0, 1];
• A(1) = S, if there is no outside interference {Vk}k∈K;
• A(0) = B, if there is no licensee interference {Uk}k∈K.

Problem Formulation. We will study the optimal informa-
tion price π that maximizes the database revenue ΠDB, where

ΠDB = π · η ·N.
Note that the market share η of the database is a function
of the information price π, and thus can be written as η(π).
Moreover, the change of η will affect the interference Xk

(known by the database) and Yk (not known by the database),
which in turn will affect the end-user’s utility A(η) achieved
from the advanced service, and the end-user’s decision.

III. END-USER SUBSCRIPTION DYNAMICS AND MARKET
EQUILIBRIUM

In this section, we will study the end-user subscription
dynamics and the market equilibrium. Specifically, we will
first study the end-user’s best choice under a given information
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price and initial market share. Then we will study how the end-
user subscription dynamically evolves over time, and what is
the eventual stable market share (market equilibrium).

A. End-user’s Best Choice

We first consider an end-user’s best choice under a particular
information price π and initial market share η0 ∈ [0, 1].
As mentioned earlier, each end-user has three choices: (i)
subscribing to the advanced service, i.e., l = a; (ii) sensing
channels to figure out the best one, i.e., l = s; and (iii) ran-
domly choosing a channel from the available channel set, i.e.,
l = b. The respective payoffs under different choices are given
in (1), where g

(
R[s]

)
= S, g

(
R[b]

)
= B, g

(
R[a]

)
= A(η0);

moreover, B < A(η0) < S. For convenience, we will write
A(η0) as A in this subsection.

First, let us compare the end-user’s choices b and s (under
the basic service). By (1), we can find that a type-θ end-user
prefers the choice b to s, if and only if

θ ·B ≥ θ · S − c.
Thus, we immediately have the following proposition.

Proposition 2. There exists a user-type threshold

θBS = c
S−B , (8)

such that (i) the end-users with type θ < θBS prefer the choice
l = b (randomly choosing a channel) to l = s (sensing
channels), and (ii) the end-users with type θ > θBS prefer
the choice l = s to l = b.

Figure 1 illustrates the threshold θBS, which is denoted by
the intersection of the blue curve (the end-user’s payoff when
l = b) and the red curve (the end-user’s payoff when l = b.
Notice that if c > S−B, then θBS = c

S−B > 1, which implies
that none of end-users will choose s (as the end-user type θ is
defined in [0, 1]) due to the high sensing cost. Therefore, in the
following analysis we will focus on the scenario of c ≤ S−B.

Next, let us compare all of the three choices of end-users.
By (1), we can easily find that a type-θ end-user will choose
to subscribe to the advanced service (l = a), if and only if

θ ·A− π ≥ θ ·B, and θ ·A− π ≥ θ · S − c.
Then, we further have the following proposition.

Proposition 3. There exist two user-type thresholds

θBA = π
A−B , and θAS = c−π

S−A , (9)

such that (i) the best choice of end-users with type θ ∈
[θBA, θAS] is l = a, (ii) the best choice of end-users with type
θ ∈ [0,min{θBA, θBS}] is l = b, and (ii) the best of choice of
end-users with type θ ∈ [max{θBA, θBS}, 1] is l = s.

Figure 1 illustrates the thresholds θBA and θAS, which are
denoted by the intersection of the green curve (the end-user’s
payoff when l = a) and the blue curve, and the intersection
of the green curve and the red curve, respectively. It is easy to
see that the end-users with type θ < θBA (Region I) prefer the
choice b, the end-users with type θ > θBS (Region III) prefer
the choice s, and the percentage of end-users subscribing to the
advanced service is η = θAS − θBA, called the derived market
share. Notice that if π > c, then θAS < 0, which implies that
none of end-users will subscribe to the advanced service due
to the high subscription fee.

1

Random (b)

Sensing (s)End-user Payoff

θBS0

c

Subscription (a)

θASθBA
π End-user Type

Region I Region II Region III

Fig. 1. End-user payoff vs End-user type θ. In Region I, the best choice of
end-user is l = b (random choice), in Region II, the best choice of end-user
is l = a (subscribing to advanced service), and in Region III, the best choice
of end-user is l = s (sensing).

To facilitate the characterization of the derived market share
η(π), we introduce the following two critical prices:10

πBS = c·(A−B)
S−B , πAS = c− (S −A). (10)

Then, under a particular information price π and an initial
market share, the derived market share η(π) is given by
• If π > πBS, then η(π) = 0 (as θAS < θBA);
• If πAS ≤ π ≤ πBS, then η(π) = θAS−θBA = c−π

S−A−
π

A−B ;
• If 0 ≤ π ≤ πAS, then η(π) = 1− θBA = 1− π

A−B .

Formally, we have the following derived market share.
Proposition 4. The derived market share under price π is

η(π) = max
{

min{θAS, 1} − θBA, 0
}
. (11)

B. End-user Subscription Dynamics

Eq. (11) shows that the derived market share η depends
not only on the information price, but also on the initial
market share η0 (as A is a function of η0). Notice that the
changing of market share will affect the end-users’ evaluation
for the database’s information (i.e., A), and thus affect the end-
users’ future subscribing decisions. Thus, the market share
will dynamically evolve, until it reaches a stable market
share (called market equilibrium). Now we study such an
end-user subscription dynamics, and characterize the market
equilibrium.

To characterize such a dynamics of end-user’s subscrip-
tion, we construct a virtual time-discrete system with slots
t = 1, 2, ..., T (each with a sufficently small time period),
and allow end-users change their decisions in every time slot
based on the new addressed market share.11 At each time slot t,
each end-user will form a belief, or expectation, on the current
market share η, and thereby on the A(η), before it makes a
subscription decision. If the end-users’ belief is higher than
the real market share η, some end-users subscribing to the
advanced service will cancel their subscription in the next time
slot. If the end-users’ belief is lower than the real market share
η, some end-users not subscribing to the advanced service will
start their subscription in the next time slot.

Let us denote ηt as the market share at time slot t. Based
on the market share ηt−1 in the previous slot t − 1, every

10Intuitively, the critical price πBS corresponds to the case that θBA = θAS
(which must be same as θBS), i.e., three curves in Figure 1 intersect at the
same point. The critical price πAS corresponds to the case that θAS = 1, i.e.,
the green and red curves in Figure 1 intersect at θ = 1.

11Notice that the addressed market share at each slot in the virtual system
corresponds to the end-user’s belief of market share in the real system.
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end-user makes the subscription decision in the current slot t
in a myopic way, that is, aiming at maximizing its expected
payoff in the current slot. Section III-A explains how an end-
user makes such a decision. Specifically, by introducing the
result in (11), we have the following derived market share at
the beginning of the time slot t = 1, ..., T :

ηt = max
{

min
{

c−π
S−A(ηt−1) , 1

}
− π

A(ηt−1)−B , 0
}
, (12)

where η0 is the initial market share at the beginning.
Let 4η denote the change (dynamics) of the market share

η between two successive time slots t and t− 1, i.e.,

4η = ηt − ηt−1, (13)

where ηt is a function of ηt−1 given in (12). Thus, 4η is also
a function of ηt−1 (and hence is a function of t). Note that a
positive (or negative) 4η implies that the market share η will
increase (or decrease) along the dynamics.

An equilibrium is defined as such a market share where no
end-user has an incentive to change its action. Formally,

Definition 1. A market share η∗ is a market equilibrium if
and only if 4η(η∗) = 0.

In the following analysis, we will study the equilibrium
market share systematically. Specifically, we will show that
under a given price, there may be one or multiple tipping
points of the initial market share, around which a slight change
will leads to a significant change on the market equilibrium.
We will also show that under a given price, there may be
multiple equilibria, and which will eventually emerge depends
on the end-user’s initial belief on the market share. Besides,
some equilibria are stable in the sense that a small fluctuation
around these equilibria will not drive the market share away
from the equilibria, while some equilibria are un-stable in the
sense that a tiny fluctuation on these equilibria will drive the
market share to a different equilibrium.

A key system parameter that affects the characterization
of the market equilibria is the sensing cost c. Next we will
consider both low and high sensing cost. For convenience, we
denote the the magnitude of the end-user’s sensing cost as
α , c

S−B , where α ∈ [0, 1].
1) Low Sensing Cost: We first consider the scenario with a

low sensing cost c (i.e., a small α). We illustrate the dynamics
of the market share η (i.e., 4η) in Figure 2, where each curve
denotes the dynamics 4η under different prices 0 ≤ πA ≤
πB ≤ πC ≤ πD, which will be discussed one by one.

(A) π = 0. The corresponding dynamics 4η (or 4η|π=0)
is denoted by the top blue curve. We notice that 4η|π=0 is
always larger than zero except the last point 4η|π=0(1) = 0.
Thus, there is a unique equilibrium η1 = 1. That is, if the
database offers the advanced service for free, then all end-users
will subscribe to the advanced service eventually. Moreover,
this equilibrium is stable.

We further notice that this blue curve is indifferentiable at
a point η = ηcr, which is a critical point satisfies c−π

S−A(η) = 1.
Specifically, (i) before the critical point (i.e., η ≤ ηcr), we have
c−π

S−A(η) < 1, and thus the blue curve is characterized by4η =
c−π

S−A(η)−
π

A(η)−B−η; (ii) after the critical point (i.e., η ≥ ηcr),
we have c−π

S−A(η) ≥ 1, and thus the blue curve is characterized
by 4η = 1− π

A(η)−B − η. Intuitively, if c−π
S−A(η) ≥ 1, all end-

users can achieve a higher payoff by subscribing to advanced
service than sensing (i.e., the green curve is always higher than
the red curve in Figure 1), and thus no end-user will choose
sensing. If c−π

S−A(η) < 1, some end-users can achieve a higher
payoff by sensing than by subscribing to the advanced service
(i.e., there is an intersection of the green and red curves in
Figure 1). This leads to the different characterizations of 4η.
When η ≤ ηcr, we have the following first-order derivative:

d4η
dη =

(
c−π

[S−A(η)]2 + π
[A(η)−B]2

)
· dA(η)

dη − 1, (14)

which is negative initially, and then becomes positive with
the increase of η. This explains the shape of the blue curve
before ηcr. When η ≥ ηcr, we have d4η

dη ≤ 0, and thus the
blue curve decreases with η in this range. Notice that for every
price described below, there exists a similar critical point ηcr
(but with a different value).
(B) π = πA. The corresponding dynamics 4η (or 4η|π=πA

)
is denoted by the second (green) curve. This curve is below
the blue curve (when π = 0), since 4η decreases with π.
For better illustration, we intentially choose a price πA such
that the smallest point before the critical point meets zero. In
this case, there are two equilibria: ηA1 and ηA2. We further
notice that the equilibrium ηA2 (illustrated by the green dot) is
stable, since any fluctuation of market share around ηA2 will
come back to ηA2 eventually, whereas ηA1 (illustrated by the
gray dot) is not stable, as a tiny increase on ηA2 will drive the
market share to the larger equilibrium ηA2. In this sense, ηA2

is the tipping point.
(C) π = πB. The corresponding dynamics 4η (or 4η|π=πB

) is
denoted by the third (red) curve. As the price increases to πB,
there are three equilibria ηB1, ηB2, and ηB3, where ηB1 and
ηB3 are stable, and ηB2 is not. Note that ηB2 is the tipping
point, since a tiny increase on ηB2 will drive the market share
to the larger equilibrium ηB3, while a tiny decrease on ηB2

will drive the market share to the smaller equilibrium ηB1.
(D) π = πC. The corresponding dynamics 4η (or 4η|π=πC

)
is denoted by the forth curve. For better illustration, we
intensionally choose a price πC such that the critical point
meets zero. There are two equilibria ηC1 and ηC2, where ηC1

is stable, and ηC2 is not. ηC2 is the tipping point.
(E) π = πD. The corresponding dynamics 4η (or 4η|π=πD

)
is denoted by the fifth curve. For better illustration, we
intensionally choose a price πD such that the initial point meets
zero 4η(0) = 0. In this case, 4η is always smaller than zero
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(except the initial point). Thus, there is an unique equilibria
η0 = 0 which is stable.

Lemma 1 summarizes the above discussions regarding the
stable equilibrium, where πA, πB, πC, πD are the prices illus-
trated in Figure 2.

Lemma 1 (Stable Equilibrium). The stable market equilibrium
under the low sensing cost scenario is given by
• if π ≥ πD, there is a unique stable equilibrium: ηEQ = 0;
• if πC ≤ π < πD, there is a unique stable equilibrium:
ηEQ = ηC1, where ηC1 is given by

c−π
S−A(η) −

π
A(η)−B − η = 0;

• if πA < π < πC, there exist two stable equilibria: ηB1

and ηB3, which are respectively given by
c−π

S−A(η) −
π

A(η)−B − η = 0, 1− π
A(η)−B − η = 0;

• if π ≤ πA, there exists a unique stable equilibrum ηEQ =
ηA2, which is given by 1− π

A(η)−B − η = 0.

Lemma 1 illustrates that there may be multiple stable
equilibria under a particular price. Next, we show which stable
equilibrium will eventually emerge depends on the initial
market share (or the initial belief of the market share). Let us
take the case π = πB in Figure 2 as an illustration, where there
are two stable equilibria ηB1 and ηB3. If the initial market
state η0 < ηB1, then the market share will gradually increase
to ηB1 as 4η > 0. Similarly, if ηB1 < η0 < ηB3, then the
market share will gradually decrease to ηB1 as 4η < 0. Only
if η0 > ηB2, the highest stable equilibrium ηB2 will emerge.
Notice that given the price, the database always prefers the
highest stable equilibrium if multiple equilibria exist. Thus,
some incentive mechanism is necessary to motivate more end-
users subscribing to the advanced service earlier, so as to
construct a higher initial market share and achieve a higher
stable equilibrium. We will study this in Section IV-B.

2) High Sensing Cost: The analysis for the high sensing
cost case is similar to that for the low sensing cost case, but
the detailed results are different due to the difference between
the shapes of the dynamics 4η. Due to space limit, we will
leave the detailed analysis in our technical report [23].

IV. DATABASE OPTIMAL INFORMATION PRICING

In this section, we will study the optimal information
pricing strategy for the database operator to maximize its
revenue, based on the market equilibrium analysis in the
previous section. In the following analysis, we first suppose
that there is an effective mechanism such that the highest stable
equilibrium will emerge if multiple equilibria exist, and derive
the optimal pricing strategy accordingly. Then we propose a
refund mechanism for the database to achieve this goal.
A. Best Pricing Decision

By Lemma 1, we can easily find that (i) if π ≥ πD, then
ηEQ = 0, (ii) if πC ≤ π < πD, then ηEQ = ηC1 which is given
by c−π

S−A(η) −
π

A(η)−B − η = 0; and (iii) if π < πC, then the
highest stable equilibrium ηEQ = ηB3 or ηA2, both given by
1 − π

A(η)−B − η = 0. We illustrate this stable market share
and the database’s revenue under different prices in Figure 3,
where ηC(π) and ηD(π) are respectively given by

1− π
A(η)−B − η = 0, c−π

S−A(η) −
π

A(η)−B − η = 0.

π 

π • N •ηC 

c πD 0 πC 

π • N • ηD η = 0 

Fig. 3. Database revenue under different prices

1) Low price region: π ≤ πC. The database ’s revenue is:
ΠDB(π) = π · ηC(π) · N , which is concave in the database’s
price π. Thus, by the KKT analysis, we have:

π∗ = π† , (1− η†) ·
[
A(η†)−B

]
(15)

where η† is the solution of A(η)−B + (1−η)·η
1−2η ·

dA(η)
dη = 0.

For more details, please refer to [23].
2) High price region: πC < π ≤ πD. The database’s revenue

is ΠDB(π) = π · ηD(π) ·N . The optimal price in this case is

π∗ = π‡ , A(η‡)−B
S−B ·

[
c− (S −A(η‡)) · η‡

]
(16)

where η‡ is solved by d
dη

(A(η)−B
S−B ·[c·η−(S−A(η))·η2]

)
= 0.

By comparing the optimal pricing and the corresponding
maximum revenue in different price regions, we can obtain
the database’s optimal pricing decision.

Lemma 2 (Optimal Information Pricing). The database’s
optimal pricing decision is given by (15) or (16), depending
on which of π† · ηC(π†) and π‡ · ηD(π‡) is the larger one.

B. Refund Policy

Now we propose a mechanism to ensure the highest stable
equilibrium. As mentioned previously, the emerging equilibri-
um depends on the initial market share η0. Moreover, the larger
the initial market share, the higher possibility the emerging of
the highest stable equilibrium. Therefore, the main purpose of
the mechanism is to motivate more end-users subscribing to
the service in the early stage, so as to construct a high enough
initial market share.

First, the end-user subscription dynamics in Section III
shows that if the initial market share η0 = 1, then the market
will always converge to the highest stable equilibrium. This
implies that we only need to find a mechanism such that
the initial market share is η0 = 1. A natural approach is to
provide the advanced service for free for a certain time (as
Spectrum Bridge did) to achieve a larger initial market share.
Although this approach can increase the probability of the
highest equilibrium, it will incur considerable revenue loss on
the database, and moreover, it still cannot guarantee the highest
equilibrium (see the example in [23]).

We propose a refund policy. The basic idea is as follows.
The database first announces a high enough hypothetic market
share (e.g., η0 = 1) to end-users, and then end-users decide
whether to subscribe to the service. Notice that end-users may
not believe the market share announced by the database, since
the database may announce an inflated market share (to enlarge
its revenue potentially). To avoid this, the database adopts the
following refund policy: Refund the subscription fee to an
end-user who is not satisfied with the information obtained.
Meanwhile, to avoid end-users frequently ask for refund (even
when it is satisfied with the information), the database will
adopt the following stopping-service policy: stop to serve an
end-user who ask for refund for a certain long time. Obviously,
by this refund policy, end-users will subscribe to the advanced
service without hesitation, as they are freely to ask for refund.
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Moreover, by adopting the stopping-service policy for a long
enough time, end-users who are satisfied with the service will
not ask for refund, since this will discontinue in a long time
and incur a large loss.12 This implies that the database does
not loss any revenue, in contrast to the previous free-serving
policy.

V. SIMULATION RESULT

In this section, we use numerical results to evaluate the
performance of the proposed information pricing scheme. The
following settings are used in our simulations: N = 80,
K = 20, and U , V , and W follow the truncated normal
distributions. The transmission data rate is defined by the
Shannon capacity: r(Z) = log(1 + P

Z ). The end-user utility is
simply defined as the expected data rate: g(R) = R.

Market Equilibrium. Figure 4 illustrate the market equi-
librium (i.e., the stable percentage of end-users subscribing to
the advanced service) vs the information price π. We can see
that the market share decreases with the price. This means
that less end-users are willing to purchase information under
a higher price. We can also see that the market share increases
with the end-user’s sensing cost (recall that α = c

S−B ). This
means that more end-users are willing to purchase information
if the sensing is expensive. More interestingly, we can see that
there exists the tipping price point, at which a slight change
will lead to a dramatic decrease on the market equilibrium.

Database Revenue. Figure 5 illustrates the database’s rev-
enue under different licensee interferences U (with a mean
changing from 10mw to 100mw). The mean value of V and
W are fixed at 40mw and 10mw, respectively. We can see that
the database’s revenue increases with the mean of the licensee
interference. This is because the licensee interference is known
by the database, and a larger licensee interference makes the
database’s information more valuable for the end-users. We
can further see from each bar group that the database’s revenue
increases with the end-user’s sensing cost.

VI. CONCLUSION

In this paper, we study a novel information market for the
spectrum database in TV white space networks, which allows
the database to sell information to end-users for revenue. We
show that the information market has the property of positive
network externality, and study the subscription dynamics and
market equilibrium systematically. Based on this equilibrium

12This is because the interference is temporal-independence (i.e., randomly
changing over different subscription periods), and thus end-users need to
subscribe to the advanced service periodically in order to get the updated
information. Note that the interference keeps unchanged within each sub-
scription period, otherwise the interference information is meaningless.
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Fig. 5. Database’s revenue under different licensee interferences.
analysis, we propose a refund policy to guarantee the desirable
market equilibrium, and further derive the database’s optimal
pricing strategy. Our theoretical analysis and numerical result
show that the information market can bring significant revenue
for the database. There are some possible directions to extend
the results in this paper. A natural extension is to consider
the oligopoly market with multiple database, where different
databases sell their respective information to end-users. On one
hand databases compete with each other for end-users (e.g.,
the duopoly competition studied in [24]); on the other hand,
databases have strong incentives to share information with
each other, as such a cooperation will increase the accuracy
of their information.
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