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Abstract— This paper establishes a framework for designing
fast, robust, and distributed algorithms for solving network utility
maximization problems with coupled objective functions. We use
two case studies in wireless communications to illustrate the key
ideas: reverse-engineering the algorithm based on the KKT con-
ditions of the optimization problem, and proving the properties
of the algorithms using monotone mapping, contraction mapping,
and supermodular game theory.

I. INTRODUCTION

In order to optimize the performance of communication
and networking systems, we often model it mathematically
as a Network Utility Maximization (NUM) problem [1].
In the NUM formulation, we associate each network en-
tity (user) with a utility function representing its perfor-
mance/satisfaction/happiness, and thus maximizing the total
network utility is equivalent to maximizing the network perfor-
mance. Due to the distributed and heterogeneous nature of the
modern network, it is often challenging to design distributed
algorithms that can achieve the global optimal NUM solution.

The difficulty in distributed algorithm design often lies
in the coupling nature of the NUM problem. There exist
two kinds of coupling: coupled constraints (e.g., limited total
network resource) and coupled objective functions (often due
to interferences or collisions among wireless nodes). The
coupled constraints can be decomposed using the dual or
primal decompositions that have been widely studied (see [2],
[1] and numerous references therein). The coupled objective
functions, however, are more difficult to deal with and thus
less studied. One recent innovative approach of dealing with
coupled objective functions is to use the “consistency pric-
ing” [3], which is mainly suitable for strictly convex NUM
formulations, involves significant amount of message passing
among users, and requires updating the variables using small
stepsizes which often lead to slow convergence.

This paper establishes a new framework of designing dis-
tributed algorithm for NUM with coupled objective functions.
The key idea is to “reverse-engineer” the algorithm based on
the KKT condition of the NUM problem, which involves “lo-
calizing the global objective function” and designing suitable
message passing mechanism with proper physical meanings.
A key feature of the corresponding algorithm is that it does
involve use any small stepsizes, thus typically has much faster
and more robust convergence compared with the consistence
pricing approach. The algorithm also works for certain cases
where the strictly convexity of the NUM problem can not be
directly proved using the standard optimization approach.

After introducing the general problem formulation and the
distributed algorithm in Section II, we describe the direct and
indirect approaches of analyzing the algorithm in Sections III
and IV. In Sections V and VI, we introduce two case studies
to illustrate the framework based on the recent results in [4]
and [5]. We finally conclude in Section VII.

II. NUM PROBLEM AND THE DISTRIBUTED ALGORITHM

A. Problem Formulation

Consider a system consisting of a set K = {1, . . . , K}
of users. Each user k ∈ K has a coupled utility function
Uk (xk,x−k) that depends on both his own local decision
variable xk and other users’ decision variables x−k =
(x1, . . . , xk−1, xk+1, . . . , xK). User k can choose xk from a
feasible set Xk =

[
Xmin

k , Xmax
k

]
. Denote x = (xk)K

k=1 and
X = ∪k∈KXk. We are interested in solving the following
NUM problem:

max
x∈X

∑

k∈K
Uk (xk,x−k) . (1)

Notice that we intentionally make the constraints (X ’s) simple
here in order to focus the study on the coupled objective func-
tion (Uk’s). The solution framework can be easily combined
with various dual and primal decomposition to deal with more
complicated and coupled constraint sets (e.g., [4]).

We make the following widely used assumption for the
utility functions.

Assumption 1: For each k, Uk (xk,x−k) is increasing and
strictly concave in xk but not necessarily concave in x.

Assumption 1 means that Problem (1) is not necessarily
a strictly concave maximization problem in variables x, and
thus might have several local/global optimal solutions. Solving
such a problem is difficult in general even through centralized
computation. We will later show various approaches of solving
such a problem in a distributed fashion under certain technical
conditions.

B. KKT Conditions

The starting point of our algorithm design is the Karush–
Kuhn–Tucker (KKT) conditions of Problem (1), which are the
necessary conditions for a global optimal solution.

Definition 1 (KKT Conditions of Problem (1)): Any global
optimal solution x∗ of Problem (1) must satisfy the following



conditions for each k ∈ K,

∂Uk

(
x∗

k,x∗
−k

)

∂x∗
k

+
∑

j $=k

∂Uj

(
x∗

k,x∗
−k

)

∂x∗
k

= λ∗
k − µ∗

k, (2)

λ∗
k(x∗

k − Xmax
k ) = 0, µ∗

k(Xmin
k − x∗

k) = 0, (3)

λ∗
k, µ∗

k ≥ 0. (4)
Definition 2 (KKT Set): The KKT set of Problem (1),

QKKT , contains all solutions that satisfy conditions (2)-(4)
for all k.

Our task is to design an distributed algorithm that is
guaranteed to converge to the KKT set. If the KKT set is
a singleton set, then the corresponding element must be the
unique global optimal solution and our algorithm converges to
such a solution.

C. Reverse Engineering Local Optimization Objective Func-
tion Based on the KKT Conditions

We design distributed algorithm by letting each user solve
a local optimization problem that is defined based on local
observation and limited message passing among users. We
will first reverse engineer the “local objective function” for
each user, such that the KKT conditions can be satisfied if all
users maximize their local objective functions properly.

In particular, each user k can chooses a local objective
function Yk (xk,x−k) that is increasing and strictly concave
in xk and satisfies

∂Yk (xk,x−k)
∂xk

=
∂Uk (xk,x−k)

∂xk
+

∑

j $=k

∂Uj (xk,x−k)
∂xk

. (5)

If user k solves the following local optimization problem for
an optimal choice of x∗

−k,

max
xk∈Xk

Yk

(
xk,x∗

−k

)
. (6)

the obtained optimal solution x∗
k satisfies (2)-(4).

One seemingly obvious choice of Yk(·) is the total network
utility,

Yk (xk,x−k) =
K∑

j=1

Uj (xk,x−k) . (7)

This choice, however, is often not practical. This is because it
is often too strong to assume that a user knows the exact forms
of Uj’s and values of xj’s for all j %= k. If such information
is available, then each user essentially knows the complete
network information can simply compute the optimal solution
like a centralized controller.

A more practical approach is to construct a local func-
tion that only depends on user k’s local observation of
the network and some limited information passing among
users. We assume that each user k can announce a locally
computable message mk as a function of x. Define m−k =
(m1, . . . ,mk−1,mk+1, . . . ,mK) and m = (mk)K

k=1. We will
construct a new local objective function Zk (xk,x−k,m−k)
for user k such that
∂Zk (xk,x−k,m−k)

∂xk
=

∂Uk (xk,x−k)
∂xk

+
∑

j $=k

∂Uj (xk,x−k)
∂xk

.

(8)

The key requirement is that user k can calculate function Zk(·)
based on its local measurement (which can depend on x−k)
and the messages announced by other users (m−k).

User k’s local optimization problem is to calculate

xk = qk (x−k,m−k) = arg max
x̄k∈Xk

Zk (x̄k,x−k,m−k) . (9)

For message mk, user k need to update it as

mk = fk(x). (10)

In Sections V and VI, we will illustrate how functions qk(·)
and fk(·) are derived based on specific problem structures
through two case studies in wireless ad hoc networks.

D. Asynchronous and Distributed Algorithm

We are now ready to describe the asynchronous distributed
algorithm as in Algorithm 1. For each user k, let Tk,x and Tk,m

be two unbounded sets of positive time instances at which
user k updates its local decision variable xk and message mk,
respectively.

Algorithm 1 Distributed Algorithm to Solve Problem (1)
1: Let time t = 0.
2: for all user k do
3: Randomly initialize xk(0) and mk(0).
4: end for
5: repeat
6: t = t + 1.
7: for all user k do
8: if t ∈ Tk,x then
9: xk(t + 1) = qk (x−k(t),m−k(t)).

10: end if
11: if t ∈ Tk,m then
12: Announce mk(t + 1) = fk(x(t)).
13: end if
14: end for
15: until (x(t),m(t)) converge

A key feature of Algorithm 1 is that there are no small step-
sizes involved, which is unlike the consistency price approach
in [3]. The stepsize-free design often leads to much faster con-
vergence, but makes the analysis (e.g., proving convergence)
more difficult. Also, users update the decision variables and
messages in a completely asynchronous fashion, which makes
the algorithm robust to practical implementations involving
packet delays, packet loss, lack of clock synchronization, etc.

Now let us look at the connection between Algorithm 1 and
the Problem (1).

Definition 3 (Fixed Point Set of Algorithm 1): The set of
fixed points of Algorithm 1 is defined as

QALG ≡ {(x,m) | (x,m) = (q (x,m) ,f(x))} , (11)

where q(x,m) = (qk(x−k,m−k))K
k=1 and f(x) =

(fk(x))K
k=1.

We can show that the following connection between the
KKT point set QKKT of Problem (1) and the fixed point set
QALG of Algorithm 1.



Lemma 1: A decision vector x∗ ∈ QKKT if and only if
(x∗,m∗) ∈ QALG for some choice of m∗.

Corollary 1: If QALG is a singleton set containing the
element (x∗,m∗), then x∗ must be the unique global optimal
solution of Problem (1).

Corollary 2: If Problem (1) has a unique global optimal so-
lution x∗, then there must exist some m∗ such that (x∗,m∗)
is the unique element in QALG.

What remains to be shown is the convergence of Algorithm
1 and the uniqueness of the fixed point. There are two main
approaches of analyzing Algorithm 1 as explained next.

III. DIRECT ANALYSIS: A MAPPING BASED APPROACH

Assume that we can eliminate the intermedium variables of
m and directly write the update of x in Algorithm 1 as

xk(t + 1) = gk((xj(τk
j (t))K

j=1), ∀k ∈ K. (12)

where τk
j (t) denotes the time stamp of the most recent version

of xj in the local memory of user k at the beginning of time
slot t. The analysis of the mapping g(·) as in

x(t + 1) = g(x(τ (t)) =
(
gk((xj(τk

j (t))K
j=1)

)K

k=1

enables us to prove the convergence of Algorithm 1.

A. Approach 1: Monotone Mapping

Definition 4 (Monotone Mapping): A mapping g(·) is
monotone increasing if

x̃ ( x̂ ⇒ g(x̃) ( g(x̂), ∀ x̃, x̂ ∈ X ,

and is monotone decreasing if

x̃ ( x̂ ⇒ g(x̃) * g(x̂), ∀ x̃, x̂ ∈ X ,

where the inequalities are interpreted as coordinate-wise.
Theorem 1 ([5]): Assume that g(x) has a unique fixed

point x! and is a monotone mapping (increasing or decreas-
ing). Starting from any initial point x ∈ X , Algorithm 1
converges globally to x!.

One weakness of the monotone mapping approach is that we
need to prove the existence and uniqueness of the fixed point
separately. This motivates us to consider the second approach.

B. Approach 2: Contraction Mapping

Definition 5 (Contraction Mapping): A mapping function
g(·) is a contraction mapping if there exists constant ζ ∈ (0, 1)
such that

‖g(x̃) − g(x̂)‖ ≤ ζ ‖x̃ − x̂‖, ∀ x̃, x̂ ∈ X , (13)

where ‖ ·‖ is some vector norm.
Theorem 2 ([6]): A contraction mappings has a unique

fixed point.
Usually the conditions for proving contraction mapping is

more stringent compared with the monotone mapping.

IV. INDIRECT ANALYSIS: A FICTITIOUS GAME APPROACH

A different approach is to map Algorithm 1 as the best
response updates of a fictitious game, and then prove its
convergence by using the special structure of the game.

To start with, we need to define the key elements of the
game: players, strategies, and payoffs. It is natural to consider
users in the network as players in the game. This may not
always work since the users in the network are cooperatively
solving Problem (1) while the players in the game are selfish.

What we can do is to split a user in the network into two
fictitious users in the game: player kx controlling the decision
variable xk and player km controlling the message mk.

• The payoff function of player kx is Zk (xk,x−k,m−k)
that satisfies (8), and Line 9 in Algorithm 1 can be viewed
as the best response update of player kx.

• The payoff function of player km should be in the form
of Fk (x) such that

fk(x) = arg max
mk

Fk (mk,x) , (14)

i.e., Line 12 of Algorithm 1 is the best response update
of player km.

Next we need to show that the fictitious game has certain
nice structures such that its best response updates converge.
One possibility is to show that the game is supermodular as
we explain next. Other special game structures that are useful
include potential game (e.g., [7], [8]) and congestion game
(e.g., [9], [10], [11]), which are not discussed here due to
space limitations.

A. Supermodular Game Theory

We first introduce some definitions. A real m-dimensional
set V is a sublattice of Rm if for any two elements a, b ∈ V ,
the component-wise minimum, a∧ b, and the component-wise
maximum, a ∨ b, are also in V . In particular, a compact sub-
lattice has a (component-wise) smallest and largest element.
A twice differentiable function f has increasing differences in
variables (x, t) if ∂2f/∂x∂t ≥ 0 for any feasible x and t. A
function f is supermodular in x if it has increasing differences
in (xk, xj) for all k %= j.

A game G = [K, {Pk} , {sk}] is supermodular if for each
player k ∈ K, (a) the strategy space Pk is a nonempty
and compact sublattice, and (b) the payoff function sk is
continuous in all players’ strategies, is supermodular in player
k’s own strategy, and has increasing differences between any
component of player k’s strategy and any component of any
other player’s strategy. The following theorem summarizes
several convergence properties of the supermodular game.

Theorem 3 ([4]): In a supermodular game G =
[K, {Pk} , {sk}],

• The set of Nash equilibria is a nonempty and contains a
component-wise smallest and largest Nash equilibrium.

• If the players’ best responses are single-valued, and
each user uses best response updates starting from the
smallest (largest) element of its strategy space, then the
strategies monotonically and asynchronously converge to
the smallest (largest) Nash equilibrium.
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Fig. 1. A single-hop ad-hoc network with N = 3 users.

• If each player starts from any feasible strategy and uses
best response updates, the strategies will eventually lie
in the set bounded component-wise by the smallest and
largest Nash equilibrium. If the Nash equilibrium is
unique, the best response updates globally converge to
that Nash equilibrum from any initial strategies.

V. CASE STUDY I: OPTIMAL RANDOM ACCESS

Consider a single-hop wireless ad-hoc network with a set
K = {1, · · · ,K} of links. We use the terms “link” and
“user” interchangeably. A sample network with three users
is shown in Fig. 1. We assume that each user’s receiver node
can hear every other user’s transmissions1. Thus, every user
interferes with every other user in the network. Time is divided
into equal-length slots. At each slot, user k transmits with
probability pk. A transmission is successful only if it is the
only transmission in the current slot. Let rk denote the average
data rate for user k. We have [12]:

rk(p) = γkpk

∏

j∈K\{i}

(1 − pj), ∀ k ∈ K, (15)

where p = (pk)K
k=1 is the vector of users’ transmission

probabilities. γk denotes the fixed peak data rate for user
k, which depends on the channel gains that are assumed to
be fixed during the time of interest. We assume that each
user k ∈ K limits its transmission probability pk ∈ Pk =
[Pmin

k , Pmax
k ] ∈ (0, 1).

We want to solve the following NUM problem:

max
p∈P

∑

k∈K
Uk(rk(p)), (16)

where P = {p : pk ∈ Pk,∀k ∈ K}, and the utility functions
are α-fair with α > 0 [13]:

Uk(x) =
{

(1 − α)−1 x1−α, if α %= 1,
log x, otherwise.

∀ k ∈ K.

(17)
Using (17), a wide range of well-known efficient and fair allo-
cations can be modeled. In particular, Problem (16) reduces to
system throughput maximization with α → 0, to proportional
fair allocation with α = 1, to harmonic mean fair allocation
with α = 2, and to max-min fairness with α → ∞. We note
that although the objective function in (16) is concave in rates
r = (rk)K

k=1, it is not concave in transmission probabilities p.

1For more general discussions, see [5].

A. Reverse Engineering of Local Objective Functions

We start to look at the problem where user k wants to
maximize the total network utility assuming p−k is fixed, i.e.,

max
pk ∈Pk

∑

j∈K
Uj(rj(pk,p−k)). (18)

Problem (18) turns out to be a convex optimization problem
in pk and its unique optimal solution is

qk(p−k) =
[
1/

(
1 + α

√
vk(p−k)

)]Pmax
k

Pmin
k

, (19)

where [x]ab = max [min [x, a] , b],

vk(p−k) = γk
α−1 ∑

j∈K\{k} (1/γj)
α−1 (1/pj − 1)α−1 .

(20)
If we choose

Yk(pk,p−k) = Uk(pk) + vk(p−k) Uk(1 − pk),

then
qk(p−k) = arg max

pk∈Pk

Yk(pk,p−k). (21)

If we further define

mj ≡ fk(pj) = (1/γj)
α−1 (1/pj − 1)α−1 ,∀j ∈ K, (22)

then we can write

ṽk(m−k) = vk(p−k) = γk
α−1 ∑

j∈K\{k} mj .

Thus, user k can obtain the value of (19) if message mj is
announced by all users j %= k. This enables us to write user
k’s local objective function as

Zk(pk,m−k) = Uk(pk) + ṽk(m−k) Uk(1 − pk). (23)

B. Distributed Random Access (DRA) Algorithm

The distributed algorithm can be obtained from Algorithm
1 by replacing variables x with p, decision variable update in
Line 9 with (21), and message update in Line 12 with (22),
respectively. We call the new algorithm Distributed Random
Access (DRA) Algorithm.

Let us consider the mapping

p(t + 1) = g(p(τ (t)) =
(
gk((pj(τk

j (t))K
j=1)

)K

k=1
,

where τk
j (t) denotes the time stamp of the most recent version

of mj in the local memory of user k at the beginning of time
slot t. We can show that

Proposition 1: Mapping g(·) is monotone increasing if α ≥
1, and is monotone decreasing if α ≤ 1.

In order to use Theorem 1 in Section III-A to show the
convergence of the DRA algorithm, we need to first prove that
it has a unique fixed point. For α ≥ 1, it has been shown that
Problem (16) is equivalent to a strictly convex optimization
problem through logarithmic variable transformation [14].
This means that the KKT set of Problem (16) is a singleton
set, and by Corollary 2 we know that the DRA algorithm
has a unique fixed point. This transformation, however, does
not work if α < 1. In that case, there is no known method
of showing that Problem (16) has a unique global optimal
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Fig. 2. An example wireless network with four users (pairs of nodes) (Tk
and Rk denote the transmitter and receiver of “user” k, respectively).

solution in general. We will use the contraction mapping
method in Section III-B to tackle this problem.

Theorem 4: For a given choice of α ∈ (0, 1), there exists a
positive integer K̂ such that g(·) is a contraction mapping if
the number of users K > K̂.

Theorems 1 and 4 together show that Algorithm 1 globally
and asynchronously converges to the unique global optimal
solution of Problem (16) when either 0 < α< 1 and the
number of user is large enough, or α ≥ 1. Thus, the DRA
algorithm works properly under delayed or even occasionally
lost messages. Interestingly, this robust behavior is accompa-
nied with fast convergence speed as shown in [5].

VI. CASE STUDY II: DISTRIBUTED POWER CONTROL

A. Problem Formulation

Consider a snap-shot of an ad hoc network with a set
K = {1, ...,K} of distinct node pairs. As shown in Fig. 2, each
pair consists of one dedicated transmitter and one dedicated
receiver. We will again use the terms “pair” and “user”
interchangeably in the following. Over the time-period of
interest, the channel gains of each pair are fixed. The channel
gain between user k’s transmitter and user j’s receiver is
denoted by hkj . Note that in general hkj %= hjk, since the
latter represents the gain between user j’s transmitter and user
k’s receiver.

Each user k’s quality of service is characterized by a utility
function Uk (γk), which is an increasing and strictly concave
function of the received signal-to-interference plus noise ratio
(SINR),

γk (p) =
pkhkk

n0 +
∑

j $=k pjhjk
, (24)

where p = (pk)K
k=1 is a vector of the users’ transmission pow-

ers and n0 is the background noise power. The users’ utility
functions are coupled due to mutual interference. An example
utility function is a logarithmic utility function uk (γk) =
θk log (γk), where θk is a user dependent priority parameter.2

2In the high SINR regime, logarithmic utility approximates the Shannon
capacity log (1 + γk) weighted by θk . For low SINR, a user’s rate is
approximately linear in SINR, and so this utility is proportional to the
logarithm of the rate.

The problem we consider is to specify p to maximize
the utility summed over all users, where each user k must
also satisfy a transmission power constraint, pk ∈ Pk =[
Pmin

k , Pmax
k

]
, i.e.,

max
p∈P

∑

k∈K
Uk (γk(p)) . (25)

We note that although Uk(·) is concave in the SINR, the
objective in Problem (25) may not be concave in power p.

B. Reverse Engineering of Local Objective FUnctions

The KKT condition (2) for user k can be written as

∂Uk (γk (p∗))
∂pk

−
∑

j $=k

mj

(
p∗j ,p

∗
−j

)
hij = λ∗

k − µ∗
k, (26)

where

mj (p) ≡ fk (p) = −
∂Uj

(
γj

(
pj ,p−j

))

∂Ij

(
p−j

)

=
∂Uj(γj(p))

∂γj(p)
(γj(p))2

pjhjj
, (27)

and Ij

(
p−j

)
=

∑
k $=j pkhkj is the total interference received

by user j and is locally measurable. Here, mj (pj , p−j) is
always nonnegative and represents user j’s marginal increase
in utility per unit decrease in total interference.

Viewing mj as a price charged to other users for generating
interference to user k (or Pigovian tax in microeconomics
[15]), condition (26) implies that we can write the local
objective of user k as

Zk

(
pk;p−k,m−k

)
= Uk

(
γk

(
pk,p−k

))
− pk

∑

j $=k

mjhkj .

(28)
Notice that the SINR γk

(
pk,p−k

)
is locally measured by user

k (although it depends on the value of p−k). The value of pk

that maximizes Zk(·) is

qk

(
p−k,m−k

)

=



 pk

γk (p)
dk



 pk

γk(p)




∑

j $=k

mjhkj












Pmax

k

Pmin
k

, (29)

where pk

γk(p) is independent of pk, and

dk (x) =






∞, 0 ≤ x ≤ U ′
k (∞) ,

(U ′
k)−1 (x) , U ′

k (∞) < x < U ′
k (0) ,

0, U ′
k (0) ≤ x,

with U ′
k(·) as the first order derivative of Uk(·).

C. Asynchronous Distributed Pricing (ADP) Algorithm

The distributed algorithm can be obtained from Algorithm 1
by replacing variables x with p, variable update in Line 9 with
(29), and message update in Line 12 with (27), respectively.
We call the new algorithm Asynchronous Distributed Pricing
(ADP) algorithm.

To implement the updates, each user k only needs to know
its own utility Uk, the channel gain hkk, the current SINR



γk, the “adjacent” channel gains hkj for any j %= k, and
the price profile m. By assumption each user knows its own
utility. The SINR γk and channel gain hkk can be measured
at the receiver and fed back to the transmitter. Measuring the
adjacent channel gains hkj can be accomplished by having
each receiver periodically broadcast a beacon; assuming reci-
procity, the transmitters can then measure these channel gains.
The adjacent channel gains account for only 1/K of the total
channel gains in the network; each user does not need to
know the other gains. The price information could also be
periodically broadcast through this beacon. Since each user
announces only a single price, the number of prices scales
linearly with the size of the network.

We next characterize the convergence of the ADP algorithm
by viewing it in a ficitious game theoretic context. We consider
the following game

GFPP = [FW ∪ FC,
{
PFW

k ,PFC
k

}
,
{
sFW

k , sFC
k

}
],

where the players are from the union of the sets FW and FC
which are both same as K. FW is a fictitious power player set;
each player k ∈ FW chooses a power pk from the strategy
set PFW

k = Pk and receives a payoff Zk

(
pk;p−k,m−k

)
as

in (28). FC is a fictitious price player set; each player k ∈ FC
chooses a price mk from the strategy set PFC

k = [0,∞] and
receives a payoff

FFC
k (mk;p) = − (mk − fk (p))2 , (30)

where fk(p) is given in (27).
We can show that certain instances of GFPP are equivalent

to supermodular games through an appropriate strategy space
transformation ([4]), and so Theorem 3 applies. We would
like to emphasize that even in the case where the KKT
set of Problem (25) is not a singleton set, Theorem 3 still
enables us to prove conditional convergence (e.g., to the
component-wise smallest or largest Nash equilibrium) of the
ADP algorithm as long as users choose the initial transmission
power appropriately. Finally, we observe that the stepsize-free
ADP algorithm can achieve a convergence speed 10 time faster
than a gradient-based method using small stepsizes [16].

VII. CONCLUSIONS

In this paper, we establish a framework for designing
fast, robust, and distributed algorithm for solving network
utility maximization (NUM) problems with coupled objective
functions. The key idea is to reverse-engineer the proper
local optimization objective functions and message passing
mechanisms through examining the KKT conditions of the
NUM problem. Since the corresponding algorithm does not
involve stepsizes as in the widely used classical optimization-
based approaches, we need to rely on various techniques such
as monotone mapping, contraction mapping, and supermodular
game theory to prove convergence properties. Two case studies
are given to illustrate the application of the framework in
designing new optimal random access algorithm and optimal
power control algorithm in wireless ad hoc networks.
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