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Abstract—Many mobile applications (abbrev. apps) reward the
users who physically visit some locations tagged as POIs (places-
of-interest) by the apps. In this paper, we study the POI-based
collaboration between apps and venues (e.g., restaurants and
cafes). On the one hand, an app charges a venue and tags the
venue as a POI, which attracts users to visit the venue and
potentially increases the venue’s sales. On the other hand, the
venue can invest in the app-related infrastructure (e.g., Wi-
Fi networks and smartphone chargers), which enhances the
users’ experience of using the app. However, the existing POI
pricing schemes of the apps (e.g., Pokemon Go and Snapchat)
cannot incentivize the venue’s infrastructure investment, and
hence cannot achieve the most effective app-venue collaboration.
We model the interactions among an app, a venue, and users by
a three-stage Stackelberg game, and design an optimal two-part
pricing scheme for the app. This scheme has a charge-with-subsidy
structure: the app first charges the venue for becoming a POI,
and then subsidizes the venue every time a user interacts with
the POI. Compared with the existing pricing schemes, our two-
part pricing better incentivizes the venue’s investment, attracts
more users to interact with the POI, and achieves a much larger
app revenue. We analyze the impacts of the app’s and venue’s
characteristics on the app’s optimal revenue, and show that the
apps with small and large congestion effects should collaborate
with opposite types of venues.

I. INTRODUCTION

A. Motivations

Many popular mobile applications (abbrev. apps), especially
the augmented reality apps, have tried to integrate users’
digital experience with the physical world. For example,
Pokemon Go (one of the most popular mobile games in 2016)
tags some physical locations as “PokeStops” and “Gyms”, and
users can collect game items or participate in battles in the
game when physically visiting these locations [1]. Snapchat
(a popular image messaging app) provides users with various
image filters, including “Geofilters”, which can be used only
when the users visit the specified physical locations [2]. Many
other apps, such as Snatch [3] and Ingress [4], integrate
users’ digital experience and physical activities using similar
approaches. We use POIs (places-of-interest) to refer to the
physical locations where users can obtain rewards or unlock
some features of the apps.

When the locations are some store or restaurant venues,
the POI tags will benefit both the apps and the venues. On
the one hand, the infrastructure at the venues enhances the
users’ experience of using the apps, which benefits the apps’
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Fig. 1: An example of POI-based collaboration, where all users use the app.

businesses. For example, many apps (especially the augmented
reality apps like Pokemon Go [5]) drain the smartphones’
batteries quickly, which makes the smartphone chargers at the
venues attractive to users. On the other hand, the POI tags
significantly increase the customer traffic to the venues, which
benefits the venues’ businesses. This explains the increasing
number of collaborations between apps (online businesses)
and venues (offline businesses). For example, Pokemon Go
collaborated with Sprint and McDonald’s, tagging 10,500
Sprint stores in the U.S. and 3,000 McDonald’s restaurants in
Japan as POIs [6], [1]. In particular, Sprint stores provided
smartphone charging stations for Pokemon Go players [6].
It was estimated that each of the McDonald’s restaurants
attracted up to 2,000 game players per day [1]. Furthermore,
Wendy’s (a restaurant chain) made its “Geofilters” in Snapchat,
which drove 42,000 additional visitors within a week [2], and
over 5,000 KFC restaurants in China were tagged as POIs by
Yinyangshi [7].

We illustrate the collaboration between an app and a venue
in Fig. 1 and discuss the key challenge of designing an
effective business model to realize the full potential of the
collaboration. As shown in the abovementioned examples, an
app usually collaborates with a store/restaurant chain (e.g.,
Sprint, McDonald’s, and KFC). Since the venues in a chain
are typically located far from each other to avoid internal
competitions, we can approximate the collaboration between
the app and the chain by the collaboration between the app
and a representative venue of the chain. In Fig. 1, before the
venue becomes a POI, only the nearby users who are interested
in the venue’s products (e.g., user 1) will visit the venue.



After the venue pays the app and becomes a POI, more users
(including those without interests in the venue’s products) visit
the venue to interact with the POI (e.g., participate in the
battles held at the POI). The number of these visitors depends
on the venue’s investment in the app-related infrastructure. The
app can also show location-dependent in-app advertisements
to these visitors to obtain additional advertising revenue.

As Fig. 1 shows, the app and venue may not have fully
aligned interests in attracting the users. The app delivers the
advertisements to all users interacting with the POI (e.g.,
users 1 ∼ 3), and hence benefits from a high investment in
the app-related infrastructure. The venue only gains profits
from the users with interests in its products (e.g., users 1
and 2), and hence may not choose a high investment level.
Therefore, the key challenge is to design the app’s optimal
pricing scheme, which (i) charges the venue for becoming a
POI, and (ii) incentivizes the venue’s investment in the app-
related infrastructure.

Two pricing schemes commonly used by the apps today
are the per-player-only pricing and lump-sum-only pricing. In
the per-player-only pricing scheme, the apps charge a venue
based on the number of users playing the apps at the venue.
For example, Pokemon Go charged a venue up to $0.50 per
game player [1]. In the lump-sum-only pricing scheme, the
apps (e.g., Snapchat) charge a venue a lump-sum fee, which
is independent of the number of players at the venue. In
this work, we will show that these existing pricing schemes
cannot effectively incentivize the venues’ investments. This
motivates us to design a novel pricing scheme that induces
the maximum infrastructure investments at the venues and
increases the numbers of users interacting with the POIs.

B. Surveys

As the POI-based collaboration between apps and venues is
relatively new, it is very important to obtain actual market
data to understand the reality. There are several existing
market surveys (e.g., Slant Marketing’s [8] and ClickZ’s [9])
about Pokemon Go players’ engagements with the venues like
restaurants, cafes, and bars. For example, in Slant Marketing’s
survey [8], 71% of the 500 respondents had visited these
venues because of the POI features, and 51% of the respon-
dents had visited at least one venue for the first time because of
Pokemon Go. These data reveal the venues’ potential benefits
from becoming POIs.

Because there is no prior survey about the dependence of
users’ experience on the POIs’ infrastructure, we conducted
a new survey involving 103 Pokemon Go players in North
America, Europe, and Asia. We find that the infrastructure
(including Wi-Fi networks, smartphone chargers, and air con-
ditioners) at the POIs could enhance the game experience of
81% of the players.

In particular, our survey shows both the network effect
and congestion effect among the players. The network effect
means that when many players interact with the POI, each
player’s experience might increase, as the players can share the
app’s information and play the app together. The congestion

effect means that the players need to compete for the limited
infrastructure (e.g., Wi-Fi network access) at the POI, which
might decrease each player’s experience. In our survey, 64%
of the players stated that their game experience could be
improved if there are nearby players playing the game (i.e.,
network effect), and 59% of the players thought that the Wi-
Fi speeds at the POIs affected their game experience (i.e.,
congestion effect).

C. Our Contributions

In this work, we analyze the intricate interactions among
an app, a venue, and users. We design a two-part pricing,
under which the app charges the venue based on a combination
of a lump-sum fee and a per-player charge. We model the
problem by a three-stage Stackelberg game: in Stage I, the
app announces the two-part pricing; in Stage II, the venue
decides whether to be a POI and how much to invest in the
infrastructure; in Stage III, the users decide whether to visit
the venue and whether to interact with the POI. The game’s
analysis is very challenging because of the coexistence of the
network effect and congestion effect.

Our analysis provides the following practical insights.
1) Insight 1: charge with subsidy: The app’s optimal two-

part pricing scheme includes a positive lump-sum fee and
a negative per-player charge, which implies that the app
should first charge the venue for becoming a POI, and then
subsidize the venue every time a user interacts with the POI.
Furthermore, the amount of the per-player subsidy should
equal the app’s unit advertising revenue, which is the app’s
revenue from showing the in-app advertisements to one user.1

2) Insight 2: ideal POIs vary across apps: We investigate
the impacts of the app’s and venue’s characteristics on the
app’s revenue, and show that different apps achieve their
largest revenues when collaborating with different venues. If
the app’s congestion effect is large,2 we prove that the app
maximizes its revenue by collaborating with a venue whose
offline products generate small utilities to the users (e.g., an
ordinary cafe). If the app’s congestion effect is small, the
app should collaborate with a venue whose offline products
generate large utilities to the users (e.g., a top-rated restaurant).

We summarize our major contributions as follows:

• Survey of Users’ Experience at POIs: We conduct the
first survey about the impact of POIs’ infrastructure on
the users’ game experience and the externalities (network
effect and congestion effect) among the users at POIs.

• Theoretical Study of POI-Based Marketing: Motivated by
our survey, we model the interactions among the app,
venue, and users as a three-stage game, and characterize

1Many apps, such as Snapchat [10], display advertisements to the apps’
users and receive payments from the corresponding advertisers. For an app that
does not show any in-app advertisement, the corresponding unit advertising
revenue is 0 in our model.

2For example, if the app is bandwidth-consuming, it has a large congestion
effect. This is because the users will easily experience the network congestion
when the venue’s Wi-Fi network is not fast enough.



their equilibrium strategies. To the best of our knowl-
edge, this is the first theoretical study on the POI-based
collaboration between online and offline businesses.

• Design of Optimal Two-Part Pricing: We design the
optimal two-part pricing for the app, and show its charge-
with-subsidy structure. In particular, the amount of the
per-player subsidy equals the unit advertising revenue.

• Analysis of Parameters’ Influences: We study the impacts
of the app’s and venue’s characteristics on the app’s
revenue, and show that the ideal POIs’ features could vary
across apps. Our results provide the app with guidelines
for selecting venues to collaborate with.

• Comparison with State-of-the-Art Schemes: We compare
our two-part pricing scheme with the existing lump-sum-
only pricing and per-player-only pricing, and show that
our scheme achieves the largest app’s revenue. In partic-
ular, (i) if the congestion effect is medium, our scheme
significantly outperforms the lump-sum-only pricing; (ii)
if the network effect is large, our scheme significantly
outperforms the per-player-only pricing; (iii) if the unit
advertising revenue is large, our scheme has an obvious
improvement over both the state-of-the-art schemes.

The rest of the paper is organized as follows. In Section
II, we introduce the model. In Sections III–V, we analyze the
equilibrium strategies of the users, venue, and app. In Section
VI, we provide the numerical results. We discuss the related
work in Section VII, and conclude the paper in Section VIII.

II. MODEL

In this section, we introduce the strategies of the app, the
representative venue of a chain, and the users, and formulate
their interactions as a three-stage game.

A. App’s Pricing

Since most popular apps (e.g., Pokemon Go and Snapchat)
are free to users, we assume that the app does not charge
the users. In our model, the app only decides the two-part
pricing. We use p ∈ R to denote the lump-sum fee and w ∈ R
to denote the per-player charge. When the venue becomes a
POI, its payment to the app contains: (i) the lump-sum fee
p, and (ii) the product between the per-player charge w and
the number of users interacting with the POI. Note that both
p and w can be negative, in which case the venue receives a
payment from the app. The app’s revenue has two components:
(i) the venue’s payment, and (ii) the advertising revenue from
the in-app advertisements.

B. Venue’s POI and Investment Choices

We use r ∈ {0, 1} to denote the venue’s choice to become a
POI (r = 1) or not (r = 0). Moreover, we use I ≥ 0 to denote
the venue’s investment level on the app-related infrastructure,
such as smartphone chargers and Wi-Fi networks.3

3Cellular technologies (e.g., LTE technology) suffer from building penetra-
tion loss [11] and may have poor indoor performance. Hence, it is necessary
for the venue to offer high-quality Wi-Fi service, which guarantees users’
wireless connection and enhances users’ game experience.

Before the venue chooses r and I , some app-related in-
frastructure might be initially available at the venue. We use
parameter I0 ≥ 0 to denote the initial investment level. Hence,
I0 + I is the total investment level.

C. Users’ Types, Decisions, and Payoffs

We consider a continuum of users who use the app and seek
to interact with a POI. We denote the mass of users by N .4

1) User’s type: Each user is characterized by attributes
l and c. The first attribute l ∈ {0, 1} indicates whether
the user has an intrinsic interest in consuming the venue’s
offline products. We assume that ηN users have l = 1 (will
consume the offline products when visiting the venue), and
the remaining (1− η)N users have l = 0. Hence, parameter
η ∈ [0, 1] represents the popularity of the venue’s offline
products.

The second attribute c denotes the user’s transportation cost
for visiting the venue, and we assume that c is uniformly
distributed in [0, cmax] [12]–[14].

2) User’s decision and payoff: We denote a user’s decision
by d, which has three possible values: d=0 (do not visit the
venue), d = 1 (visit the venue but do not interact with the
POI), and d= 2 (visit the venue and interact with the POI).
Under the venue’s choices r and I , a type-(l, c) user’s payoff
is

Πuser (l, c, d, r, I) =
0, if d = 0,
Ul − c, if d = 1,
Ul − c+ V+θȳ (r, I)N − δ

I+I0
ȳ (r, I)N, if d = 2.

(1)

When d = 0, the user’s payoff is 0.5 When d = 1, the user’s
payoff is the difference between Ul and the transportation cost
c. Recall that the user consumes the offline products during
its visit if and only if l = 1. Here, U > 0 denotes the user’s
utility of consuming the offline products.

Compared with d = 1, the user’s payoff under d = 2
contains additional terms because of the interaction with the
POI. We use V > 0 to denote a user’s base utility of interacting
with the POI. The term θȳ (r, I)N corresponds to the network
effect, which increases with the number of users interacting
with the POI [13], [14]. Here, parameter θ ≥ 0 is the network
effect factor, describing the strength of the network effect. We
use function ȳ (r, I) ∈ [0, 1] to denote the fraction of users
choosing d = 2 (i.e., interacting with the POI), given the
venue’s choices r and I . The ȳ (r, I) depends on all users’
equilibrium decisions, and will be computed in Section III.

4We assume that the number of users using the app is relatively small,
compared with the number of users who do not use the app. In this case, the
users who do not use the app are not affected by whether the venue is a POI,
and these users are not considered in our model.

5Even if the users do not interact with the POI (i.e., d = 0 or 1), they might
still use the app. However, in this case, the app’s usage will be much smaller
than that when the users interact with the POI. Furthermore, the users who do
not interact with the POI might use the app at different locations. Therefore,
we do not consider the congestion effect and network effect among these
users. Without loss of generality, we normalize these users’ utilities of using
the app to 0 in (1).



Stage I
The app announces (p, w) ∈ R× R.

⇓
Stage II

The venue chooses r ∈ {0, 1} and I ≥ 0.
⇓

Stage III
Each type-(l, c) user decides d ∈ {0, 1, 2}.

Fig. 2: Three-Stage Game.

The term − δ
I+I0

ȳ (r, I)N corresponds to the congestion effect
of sharing the app-related infrastructure, where parameter
δ > 0 is the congestion effect factor. The congestion level
δ

I+I0
ȳ (r, I)N increases with the number of users interacting

with the POI, and decreases with the total investment level
I+I0.6 As we can see in Section III, when I+I0 approximates
0, we have ȳ (r, I) = 0. This implies that no user will interact
with the POI at the equilibrium when there is no app-related
infrastructure (e.g., no wireless network).

3) Fractions x̄ (r, I) and ȳ (r, I): We use function
x̄ (r, I) ∈ [0, 1] to denote the fraction of users that have
l = 1 and visit the venue (i.e., choose d = 1 or 2), given
the venue’s choices r and I . Function x̄ (r, I) corresponds to
the fraction of users consuming the venue’s offline products,
hence the venue wants to increase x̄ (r, I). Recall that ȳ (r, I)
is the fraction of users interacting with the POI (i.e., choosing
d = 2) at the equilibrium, hence the app wants to increase
ȳ (r, I). The difference between x̄ (r, I) and ȳ (r, I) reveals
that the venue and app have overlapping but not fully aligned
interests in attracting the users.

D. Three-Stage Stackelberg Game

We formulate the interactions among the app, venue, and
users by a three-stage Stackelberg game, as illustrated in Fig.
2. Since the app has the market power and decides whether to
tag the venue as a POI, we assume that the app is the leader
and first-mover in the game.

We analyze the three-stage game by backward induction.
We assume that the users’ maximum transportation cost cmax

is large so that cmax > U+V +θN [13], [14]. This captures a
general case where some users are located far from the venue
and will not visit it even if it becomes a POI.

III. STAGE III: USERS’ DECISIONS

Given the app’s pricing (p, w) in Stage I and the venue’s
choices of r and I in Stage II, each type-(l, c) user solves the
following problem in Stage III.

Problem 1. A type-(l, c) user decides d∗ by solving

max Πuser (l, c, d, r, I) (2)

var. d ∈
{
{0, 1} , if r = 0,
{0, 1, 2} , if r = 1,

(3)

6References [15] and [16] used similar congestion effect models. The model
captures the fact that the marginal reduction in the congestion level decreases
with the investment, and also makes the three-stage game’s analysis tractable.
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Fig. 3: Users’ equilibrium decisions in Stage III. Since there are infinitely
many Ĉ satisfying Proposition 2, users have infinitely many equilibriums in
Case B, and we show one example here.

where the payoff function Πuser (l, c, d, r, I) is given in (1).

Here, (3) implies that the user can interact with the POI if
and only if the venue is a POI. Based on the venue’s choices of
r and I , we show the users’ optimal decisions in the following
three propositions, and illustrate them in Fig. 3.

Proposition 1 (Case A: No POI). When r = 0, the unique
equilibrium at Stage III is

d∗ (l, c, r, I) =

{
1, if c ∈ [0, Ul) ,
0, if c ∈ [Ul, cmax] ,

(4)

where l ∈ {0, 1} and c ∈ [0, cmax].7 Moreover, x̄ (r, I) =
η U
cmax

and ȳ (r, I) = 0.

When the venue is not a POI, only the users with intrinsic
interests on the offline products (i.e., l = 1) and small
transportation costs (i.e., c < U ) will visit the venue.

We define Ith , δ
θ+V cmax

ηUN

as the threshold investment level.
We say the total investment is sufficient if I + I0 > Ith, and
it is insufficient otherwise. In Propositions 2 and 3, we show
that after becoming a POI, the venue attracts new visitors if
and only if the total investment is sufficient.

Proposition 2 (Case B: POI with insufficient total investment).
When r = 1 and I + I0 ≤ Ith, the unique form of equilibrium
at Stage III is

d∗ (l, c, r, I) =

 2, if c ∈ Ĉ and l = 1,

1, if c ∈ [0, Ul) \ Ĉ,
0, if c ∈ [Ul, cmax] ,

(5)

where l ∈ {0, 1}, c ∈ [0, cmax], and Ĉ ⊆ [0, U) can be any set
that satisfies η

∫ U
0

1
cmax

1{c∈Ĉ}dc = V(
δ

I+I0
−θ

)
N

.8 Moreover,

x̄ (r, I) = η U
cmax

and ȳ (r, I) = V(
δ

I+I0
−θ

)
N

.

7At the equilibrium, the user whose l and c satisfy c = Ul has the same
payoff under choices d = 0 and d = 1. This user’s decision does not affect
the computation of x̄ (r, I) (and the analysis of Stage II and Stage I). This is
because c follows a continuous distribution, and the probability for a user to
have c = Ul is zero. Without affecting the analysis, we assume that such a
user always chooses d = 0 to simplify the presentation. Similar assumptions
are made in Proposition 2 and Proposition 3.

8Here, 1{·} is the indicator function, which equals 1 if the event in the
braces is true, and equals 0 if the event is false.



H1 (w) ,


− N
cmax

bη2U + N
cmax−Nθ

(√
(V + ηU) (bη − w)−

√
δk
)2

+ kI0, if w < w1,

−wNη U
cmax
− kIth + kI0, if w1 ≤ w ≤ w0,

− V
δ
I0
−θw, if w > w0.

(7)

H2 (w) ,

 − N
cmax

bη2U + N
cmax−Nθ

(√
(V + ηU) (bη − w)−

√
δk
)2

+ kI0, if w < w2,

− V
δ
I0
−θw, if w ≥ w2.

(8)

H3 (w) ,

 − N
cmax

bη2U + N
cmax−Nθ

(√
(V + ηU) (bη − w)−

√
δk
)2

+ kI0, if w < w3,

(bη − w)N V cmaxI0−ηUNδ+ηUNθI0
c2maxI0+cmaxNδ−cmaxNθI0

− wNη U
cmax

, if w ≥ w3.
(9)

When the venue becomes a POI and the total investment
is insufficient, the app-related infrastructure at the venue does
not allow many users to interact with the POI. In this case, a
user’s net payoff of interacting with the POI at the equilibrium
is zero (V+θȳ (r, I)N − δ

I+I0
ȳ (r, I)N = 0) because of the

congestion. Compared with Case A, the venue whose r and
I satisfy Case B does not attract any new visitors. In Case
B, the app-related infrastructure simply enables some of the
initial visitors (i.e., the visitors when the venue is not a POI)
to interact with the POI. We use Ĉ to denote the set of these
visitors’ transportation costs in (5), and Ĉ need not be an
interval. In Fig. 3’s example, the set of transportation costs
of the initial visitors who interact with the POI consists of
three intervals (i.e., the three purple intervals).

Proposition 3 (Case C: POI with sufficient total investment).
When r = 1 and I+I0 > Ith, the unique equilibrium at Stage
III is

d∗ (l, c, r, I) = 2, if c ∈
[
0, Ul + V cmax(I+I0)−ηUNδ+ηUNθ(I+I0)

cmax(I+I0)+Nδ−Nθ(I+I0)

)
,

0, if c ∈
[
Ul + V cmax(I+I0)−ηUNδ+ηUNθ(I+I0)

cmax(I+I0)+Nδ−Nθ(I+I0) , cmax

]
,

(6)

where l ∈ {0, 1} and c ∈ [0, cmax]. Moreover, x̄ (r, I) =

η U
cmax

+ η V cmax(I+I0)−ηUNδ+ηUNθ(I+I0)
c2max(I+I0)+cmaxNδ−cmaxNθ(I+I0)

and ȳ (r, I) =

η U
cmax

+ V cmax(I+I0)−ηUNδ+ηUNθ(I+I0)
c2max(I+I0)+cmaxNδ−cmaxNθ(I+I0)

.

When the venue becomes a POI and the total investment is
sufficient, the infrastructure enables all of the venue’s visitors
to interact with the POI and obtain positive net payoffs of
interacting with the POI at the equilibrium (V+θȳ (r, I)N −
δ

I+I0
ȳ (r, I)N > 0). Compared with Case A and Case B, the

venue whose r and I satisfy Case C attracts new visitors, in-
cluding users without intrinsic interests on the offline products.

IV. STAGE II: VENUE’S POI AND INVESTMENT CHOICES

In Stage II, the venue solves the following problem by re-
sponding to the app’s pricing (p, w) in Stage I and anticipating
the users’ decisions d∗ (l, c, r, I) in Stage III.

Problem 2. The venue makes the POI choice r∗ and invest-
ment choice I∗ by solving

max Πvenue(r, I, p, w),bNx̄ (r, I)−kI−r (p+ wNȳ (r, I))
(10)

var. r ∈ {0, 1} , I ≥ 0. (11)

Here, b > 0 is the venue’s profit due to one user’s consumption
of the offline products, and k > 0 denotes the unit investment
cost.

In (10), Πvenue(r, I, p, w) is the venue’s payoff, the term
bNx̄ (r, I) is the venue’s aggregate profit due to its offline
products’ sales,9 the term kI is the investment cost [15],
and the term r (p+ wNȳ (r, I)) is the payment to the app
under the two-part pricing. Recall that x̄ (r, I) and ȳ (r, I)
are the fractions of users consuming the offline products and
interacting with the POI, respectively, and they are given in
Propositions 1, 2, and 3 in Section III.

We define the threshold congestion effect factor δth as

δth ,
(V cmax + θηUN) (bη (V cmax + θηUN)− θI0cmaxk)

kcmaxηU (cmax − θN)
.

In the following, we analyze three situations with different I0
and δ, and derive the venue’s corresponding optimal choices.

A. Situation I: Small Initial Investment (I0 ≤ Ith) and Large
Congestion Effect (δ > δth)

In order to facilitate the presentation, we define w0 ,
−k (δ−θI0)cmax

V cmax+θηUN
< 0 and w1 , bη − δk(V+ηU)c2max

(V cmax+θηUN)2
. With

δ > δth, we can show that w0 > w1. Based on w0, w1, and
function H1 (w) defined in (7), we derive Proposition 4 and
illustrate it in Fig. 4 (the illustrations of Propositions 5 and 6
are omitted because of the space limit).

9To simplify the model, we assume that each user makes the visiting
decision once. In practice, a user may visit the venue (e.g., a cafe) regularly.
In this case, we use b to represent the venue’s overall profit due to one user’s
regular consumption of the offline products within a certain time period.
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Fig. 4: Situation I of Venue’s POI Decision r∗ and Investment I∗ in Stage II.

Proposition 4. When I0 ≤ Ith and δ > δth, the venue’s
optimal choices are

(r∗ (p, w) , I∗ (p, w)) =
(0, 0) , if p>H1(w),(
1, N
cmax−Nθ

√
δ(V+ηU)(bη−w)

k
−δ N

cmax−Nθ−I0
)
, if p≤H1(w), w<w1,

(1, Ith − I0) , if p≤H1(w), w1≤w≤w0,
(1, 0) , if p≤H1(w), w>w0.

First, we see that the venue will become a POI (i.e.,
r∗ (p, w) = 1) if and only if p and w satisfy p≤H1 (w) (i.e.,
the orange, blue, and purple parts in Fig. 4). This means that
H1 (w) is the maximum lump-sum fee under which the venue
will be a POI in Situation I, given the per-player charge w.

Second, we discuss the venue’s investment I∗ (p, w). When
p > H1 (w), the venue does not become a POI, and
hence chooses I∗ (p, w) = 0. When p ≤ H1 (w), I∗ (p, w)
is independent of p, and is decreasing in w. Specifically,
I∗ (p, w) has three different expressions based on the value
of w: (a) when w < w1, the venue chooses I∗ (p, w) =

N
cmax−Nθ

√
δ(V+ηU)(bη−w)

k − δ N
cmax−Nθ−I0 > Ith − I0. Ac-

cording to Proposition 3 and our analysis in Stage III, the
venue achieves a sufficient total investment, which attracts
new visitors; (b) when w1 ≤ w ≤ w0, the venue chooses
I∗ (p, w) = Ith−I0. According to Proposition 2 and our anal-
ysis in Stage III, the venue’s total investment is insufficient.
The investment enables all the initial visitors to interact with
the POI but cannot attract new visitors; (c) when w > w0, the
per-player charge is large, and the venue does not invest.

B. Situation II: Small Initial Investment (I0 ≤ Ith) and Small
Congestion Effect (δ ≤ δth)

We define w2 as the w ∈ [w0, w1] (since δ ≤ δth, it
can be easily shown that w0 ≤ w1) that satisfies the equa-

tion N
cmax−Nθ

(√
(V + ηU) (bη − w)−

√
δk
)2
− N
cmax

bη2U+

kI0 + V
δ
I0
−θw = 0. We can prove that w2 is unique. Based

on w2 and H2 (w) defined in (8), we have the following
proposition.

Proposition 5. When I0 ≤ Ith and δ ≤ δth, the venue’s
optimal choices are

(r∗ (p, w) , I∗ (p, w)) =
(0, 0) , if p>H2(w),(
1, N
cmax−Nθ

√
δ(V+ηU)(bη−w)

k
−δ N

cmax−Nθ−I0
)
, if p≤H2(w), w<w2,

(1, 0) , if p≤H2(w), w≥w2.

First, the venue becomes a POI if and only if p ≤ H2 (w).
Second, when p ≤ H2 (w), the venue’s optimal invest-
ment level I∗ (p, w) has two different expressions: (a) when
w < w2, the venue achieves a sufficient total investment and
attracts new visitors; (b) when w ≥ w2, the venue does not
invest because of the large per-player charge. In Situation II,
whenever I∗ (p, w) > 0, the total investment I∗ (p, w) + I0 is
always sufficient, which is different from Situation I. This is
because the congestion effect factor δ in Situation II is smaller
than that in Situation I, which makes it easier for the venue
to attract new visitors.

C. Situation III: Large Initial Investment (I0 > Ith)

We define w3 , bη− k((cmax−θN)I0+δN)2

δ(V+ηU)N2 and define H3 (w)
in (9), based on which we have the following proposition.

Proposition 6. WhenI0>Ith, the venue’s optimal choices are

(r∗ (p, w) , I∗ (p, w)) =
(0, 0) , if p>H3(w),(
1, N
cmax−Nθ

√
δ(V+ηU)(bη−w)

k
−δ N

cmax−Nθ−I0
)
, if p≤H3(w), w<w3,

(1, 0) , if p≤H3(w), w≥w3.

First, the venue becomes a POI if and only if p ≤ H3 (w).
Second, the venue chooses a positive investment level if and
only if p ≤ H3 (w) and w < w3. In Situation III, the initial
investment level I0 is above Ith, so the total investment is
always sufficient, regardless of w. Therefore, as long as the
venue becomes a POI, it attracts new visitors.

D. Summary of Three Situations

We summarize the three situations’ main features as follows.
• In Situation I (small initial investment and large conges-

tion effect), even if the venue’s equilibrium investment
level I∗ (p, w) is positive, it may not attract new visitors.

• In Situation II (small initial investment and small conges-
tion effect), the venue attracts new visitors if and only if
its equilibrium investment level is positive.

• In Situation III (large initial investment), the venue al-
ways attracts new visitors after becoming a POI, regard-
less of its equilibrium investment level.

V. STAGE I: APP’S PRICING

A. Problem Formulation

In Stage I, the app solves Problem 3, anticipating the
venue’s and users’ decisions in Stages II and III, respectively.

Problem 3. The app determines (p∗, w∗) by solving

maxRapp (p, w) , r∗ (p, w)
(
p+ wNȳ (r∗ (p, w) , I∗ (p, w))

)
+ φNȳ (r∗ (p, w) , I∗ (p, w)) (12)

var. p, w ∈ R. (13)

Here, φ ≥ 0 is the unit advertising revenue, representing the
app’s advertising revenue when a user interacts with the POI.

Rapp (p, w) is the app’s revenue, which has two compo-
nents: the venue’s payment based on the two-part pricing, and



the app’s advertising revenue. Function ȳ (r, I) is given in
Propositions 1, 2, and 3. Functions r∗ (p, w) and I∗ (p, w)
are given in Propositions 4, 5, and 6.

B. Optimal Two-Part Pricing

We show the app’s optimal two-part pricing in Theorem 1.

Theorem 1. The app’s optimal two-part pricing is

w∗ = −φ, p∗ = H̃ (−φ) , (14)

where function H̃ (w) , w ∈ R, is defined as

H̃(w),

H1 (w) , if I0 ≤ Ith and δ > δth,
H2 (w) , if I0 ≤ Ith and δ ≤ δth,
H3 (w) , if I0 > Ith.

(15)

The per-player charge w∗ ≤ 0 and the lump-sum fee p∗ ≥ 0.

From Propositions 4, 5, and 6, H̃ (w) is the maximum lump-
sum fee under which the venue will be a POI, given the w.

We first discuss the intuitions behind Theorem 1. With
w∗ ≤ 0, the app pays the venue based on the number of
users interacting with the POI. This incentivizes the venue
to invest in the app-related infrastructure, which attracts more
users to interact with the POI. When w∗ = −φ, the venue will
be incentivized to choose an investment level that maximizes
the summation of the app’s revenue and the venue’s payoff.
Meanwhile, the app sets p∗ = H̃ (−φ), which is the maximum
lump-sum fee the venue will accept under w∗ = −φ. With
p∗ = H̃ (−φ), the app extracts all the venue’s surplus. Hence,
we can see that w∗ and p∗ maximize the app’s revenue.

Theorem 1 brings the following practical insights. The app
should announce a charge-with-subsidy scheme to the venue:
(i) in order to become a POI, the venue needs to pay the app
H̃ (−φ); (ii) every time a user interacts with the POI, the app
pays the venue φ (unit advertising revenue).

C. App’s Revenue and Venue’s Payoff

Under the prices p∗ and w∗, the app’s revenue and the
venue’s payoff are given in the following corollary.

Corollary 1. Under p∗ and w∗, we have

Rapp (p∗, w∗) = H̃ (−φ) ≥ 0, (16)

Πvenue (r∗ (p∗, w∗) , I∗ (p∗, w∗) , p∗, w∗) = bNη
U

cmax
. (17)

Based on (12) and w∗ = −φ, the app’s payment to the venue
due to the negative per-player charge cancels out the app’s total
advertising revenue. Hence, the app’s optimal revenue equals
its lump-sum fee, i.e., Rapp (p∗, w∗) = p∗ = H̃ (−φ).

From (17), the venue’s payoff under the app’s optimal
pricing is bNη U

cmax
, which equals the venue’s payoff when

it does not become a POI. This is because we assume that the
app has the market power. In this case, the app can extract all
the venue’s surplus via pricing. We can also consider a more
general bargaining-based negotiation model between the app
and venue in Stage I. The bargaining formulation only changes
the profit split between the app and venue, and does not affect

the venue’s choices in Stage II and the users’ decisions in
Stage III. Under the bargaining model, the venue’s payoff
increases with its bargaining power and could be much larger
than bNη U

cmax
.

D. Parameters’ Influences on App’s Revenue

In this section, we analyze the influence of U (i.e., the
user’s utility of consuming the offline products) on the app’s
optimal revenue Rapp (p∗, w∗), which provides guidelines for
the app regarding which type of venues to collaborate with.
The influences of many other parameters, such as V , θ, and
δ, are intuitive, and hence the results are omitted here.

The influence of U is summarized as follows.

Proposition 7. When δ ≤ (bηNθ+φcmax)I0
bηN , Rapp (p∗, w∗)

increases with U ∈ (0,∞).

Proposition 8. When δ > (bηNθ+φcmax)I0
bηN , Rapp (p∗, w∗) de-

creases with U for U ∈
(

0, δk(bη+φ)

η(Nθbηcmax
+φ)

2 − V
η

]
, and increases

with U for U ∈
[

δk(bη+φ)

η(Nθbηcmax
+φ)

2 − V
η ,∞

)
.

To better illustrate the above propositions, we discuss the
following three types of impacts when U increases. (i) (pos-
itive impact) The venue attracts more users with intrinsic
interests on the offline products, which increases the number
of users interacting with the POI. This enables the app to
obtain more advertising revenue. (ii) (positive impact) More
users visit the venue before it becomes a POI. After the venue
becomes a POI and makes sufficient investment, all of these
initial visitors interact with the POI, which generates a large
network effect and attracts more visitors. This potentially in-
creases the venue’s payment to the app. (iii) (negative impact)
The threshold investment level Ith = δ

θ+V cmax
ηUN

increases, and
the venue should invest more to achieve a sufficient total
investment, which overcomes the congestion and attracts new
visitors. This potentially reduces the venue’s payment to the
app.

In Proposition 7, the congestion effect δ ≤ (bηNθ+φcmax)I0
bηN .

In this case, the third impact (related to the congestion effect)
is dominated by the first two impacts. Hence, the increase of
U always improves Rapp (p∗, w∗).

In Proposition 8, different impacts dominate in different
regions of U , and hence lead to more complicated and in-
teresting results. Based on our assumption in Section II-D,
U is upper-bounded by cmax − V − θN . If δ is very
large, the threshold δk(bη+φ)

η(Nθbηcmax
+φ)

2 − V
η will exceed the upper

bound, and Rapp (p∗, w∗) will decrease with U for U ∈
(0, cmax − V − θN).

Based on the above discussions, we obtain the following
practical insights. First, if the congestion effect is small,
the app achieves a large revenue when collaborating with a
venue with a large U (e.g., a top-rated restaurant). Second, if
the congestion effect is very large, the app achieves a large
revenue when collaborating with a venue with a small U
(e.g., an ordinary cafe). Hence, the apps with small and large
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congestion effects should collaborate with opposite types of
venues, i.e., the ideal POIs’ features vary across apps.

VI. NUMERICAL RESULTS

In this section, we compare our proposed two-part pricing
scheme with two state-of-the-art pricing schemes: the per-
player-only pricing (e.g., used by Pokemon Go), where the
app charges the venue only based on the per-player charge
w∗only = arg maxw∈RR

app(0, w); the lump-sum-only pricing
(e.g., used by Snapchat), where the app charges the venue only
based on the lump-sum fee p∗only = arg maxp∈RR

app (p, 0).
1) Impact of congestion effect: In Fig. 5, we compare the

three schemes under different congestion effect factor δ. We
choose N = 200, cmax = 24, U = 3, V = 5, I0 = 0.6, k = 3,
b=1, η=0.2, θ=0.05, and φ=0.4. We change δ from 0.1 to
0.5, and plot the app’s total revenues Rapp (solid curves) and
advertising revenues (dash curves) under different schemes.

First, we observe that the two-part pricing always achieves
the largest app’s total revenue (solid blue curve). For example,
the two-part pricing improves the app’s total revenue over
the per-player-only pricing by at least 55% for all δ’s values
shown in Fig. 5. Second, the two-part pricing always achieves
the largest app’s advertising revenue (dash blue curve), which
implies that it also achieves the highest number of users
interacting with the POI. This is because the two-part pricing
has the lowest per-player charge, and can best incentivize the
venue to invest in the app-related infrastructure and relieve the
congestion.

When δ is medium (e.g., 0.2 ≤ δ ≤ 0.35), the two-
part pricing significantly improves the app’s total revenue
compared with the lump-sum-only pricing. To understand this,
note that the solid blue curve could be below the dash blue
curve under the two-part pricing. This means that the app pays
the venue to incentivize the investment. Under the lump-sum-
only pricing, however, the app cannot incentivize investment
by paying the venue. Hence, when δ is medium, the two-part
pricing relieves the congestion, and significantly outperforms
the lump-sum-only pricing. When δ further increases (e.g.,
δ > 0.35), the congestion cannot be efficiently relieved even
with the venue’s investment, and the gap between the app’s
total revenues under the two-part pricing and lump-sum-only
pricing decreases.

2) Impact of network effect: In Fig. 6, we compare the
three pricing schemes under different network effect θ. We let
δ = 0.1, and change θ from 0 to 0.05. The other parameters
are the same as in Fig. 5. When θ is large, the two-part
pricing significantly outperforms the per-player-only pricing
(the performance gap increases with θ). This is because a large
network effect enables the POI to attract many visitors, and the
venue is willing to pay the app for becoming a POI. Under
the two-part pricing, the app can set a large lump-sum fee
to obtain a large venue’s payment. Under the per-player-only
pricing, the app cannot set a large per-player charge to obtain
a large venue’s payment, since a large per-player charge will
reduce the venue’s investment, the number of users interacting
with the POI, and the app’s advertising revenue.

3) Impact of advertising revenue: In Fig. 7, we compare the
three pricing schemes under different unit advertising revenue
φ. We let δ = 0.1, and change φ from 0.3 to 1.7. The other
parameters are the same as in Fig. 5. When φ is large, the two-
part pricing significantly outperforms the other two schemes.
This is because the two-part pricing best incentivizes the
venue’s investment, and hence results in the highest number
of users interacting with the POI. When φ is large, the two-
part pricing achieves a much larger app’s total revenue than
the other two schemes.

VII. RELATED WORK

A. Interaction between online and offline businesses

First, there have been many references studying the on-
line/offline competitions. For example, Forman et al. in [17]
investigated the competition between online and offline re-
tailers of the same products, considering the consumers’
heterogeneous physical locations. Viswanathan et al. in [18]
analyzed the impacts of the network effect and consumers’
switching costs on the competition between the online and
offline firms. Balasubramanian in [19] investigated how the
online retailers selectively inform the consumers about the
online channel when competing with the offline retailers.

Second, there are few references focusing on the on-
line/offline collaborations. Yu et al. in [20] studied a situation
where the online advertisers sponsor the venues’ public Wi-
Fi services, and deliver mobile advertisements to the venues’
visitors. Yu et al. in [21] considered the mobile network



operators and venues’ collaborations in deploying public Wi-Fi
hotspots, which offload the cellular networks’ traffic and attract
visitors to the venues. References [22] and [23] are related
to the empirical studies of Pokemon Go’s impacts on the
offline businesses. For example, Pamuru et al. in [22] collected
consumers’ reviews of 2,032 restaurants in Houston, and in-
vestigated the correlation between the reviews and whether the
restaurants are covered by the POIs (“PokeStops”). Different
from [22] and [23], our work provides the first analytical
modeling and analysis for the collaboration between online
apps and offline businesses.

B. Two-Part Pricing

Since the studies in [24] and [25], there have been many
references analyzing the two-part pricing and its applications.
In this pricing scheme, a seller can use the per-unit charge
to induce the buyer’s efficient (e.g., welfare-maximizing) con-
sumption, and use the lump-sum fee to extract the buyer’s
surplus. The two-part pricing is particularly useful in the POI-
based collaboration, where the app (seller) induces the venue’s
(buyer’s) investment via the per-player charge. Different from
the pricing schemes in the references that include positive per-
unit charges (e.g., [24]–[27]), our optimal two-part pricing
includes a negative per-player charge. This is because the
investment cost is paid by the venue rather than the app,
and the app needs to subsidize the venue’s investment via a
negative per-player charge.

VIII. CONCLUSION

The economics of the online apps and offline venues’
collaboration is a fast-emerging research area, and we provided
the first modeling and analysis of the POI-based collaboration.
We designed a charge-with-subsidy pricing scheme, which
can significantly improve the apps’ revenues and the users’
engagements with the venues, compared with the state-of-the-
art pricing schemes. We showed that the ideal POIs’ features
could vary across apps, and we provided useful guidelines for
the apps to optimally select venues to collaborate with.

Our work opens up exciting directions for future works.
First, our work assumes that different users have the same
values of network effect factor and congestion effect factor.
It is more practical to consider the users with heteroge-
neous sensitivities to the network effect and congestion effect.
Second, our work focuses on the collaboration between an
app and a store/restaurant chain’s representative venue. For
future research, it is interesting to consider the collaboration
between an app and multiple venues of different owners in the
same area. However, this extension is very complicated and
challenging, since the users decide the visits by comparing
both the qualities of the venues’ offline products and the
venues’ investment levels on the app-related infrastructure
(related to the qualities of the online products).
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