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Abstract—Achieving weighted throughput maximization
(WTM) through power control has been a long standing
open problem in interference-limited wireless networks. The
complicated coupling between the mutual interferences of links
gives rise to a non-convex optimization problem. Previous
work has considered the WTM problem in the high signal to
interference-and-noise ratio (SINR) regime, where the problem
can be approximated and transformed into a convex optimization
problem through proper change of variables. In the general
SINR regime, however, the approximation and transformation
approach does not work. This paper proposes an algorithm,
MAPEL, which globally converges to a global optimal solution
of the WTM problem in the general SINR regime. The MAPEL
algorithm is designed based on three key observations of the
WTM problem: (1) the objective function is monotonically
increasing in SINR, (2) the objective function can be transformed
into a product of exponentiated linear fraction functions, and
(3) the feasible set of the equivalent transformed problem is
always “normal", although not necessarily convex. The MAPEL
algorithm finds the desired optimal power control solution by
constructing a series of polyblocks that approximate the feasible
SINR region in an increasing precision. Furthermore, by tuning
the approximation factor in MAPEL, we could engineer a
desirable tradeoff between optimality and convergence time.
MAPEL provides an important benchmark for performance
evaluation of other heuristic algorithms targeting the same
problem. With the help of MAPEL, we evaluate the performance
of several existing algorithms through extensive simulations.

Index Terms—Wireless Ad Hoc Networks, Power Control,
Global Optimization, Non-convex Optimization, Multiplicative
Linear Fractional Programming.

I. INTRODUCTION

DUE to the broadcast nature of wireless communications,
simultaneous transmissions in the same channel interfere

with each other and limit the wireless network performance.
One important interference mitigation technique is transmit-
power control at the physical layer. This technique has been
well studied and implemented in the context of wireless
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cellular communications (see a recent survey in [1]). The
research in this area can be divided into two main threads.
The first thread is concerned with achieving fixed signal to
interference-plus-noise ratio (SINR) targets with minimum
transmission power (e.g., [2]–[9]). This formulation is moti-
vated by traditional voice communications, where an SINR
higher than a prescribed value is not helpful in terms of
further improving user-perceived Quality of Service (QoS).
The second thread is concerned with joint SINR allocation
and power control. This formulation is motivated by data
communication applications, where higher SINR means higher
data rate and better QoS. Such joint optimization becomes
more important as data applications will be dominant in
next generation wireless networks (e.g., 4G and all IP-based
communication systems).

The joint SINR allocation and power control problem is
more difficult to solve than the fixed SINR target case. This is
because we need to optimize over the entire feasible SINR
region, which is typically non-convex due to complicated
interference coupling between links. One important instance
of this joint optimization is weighted throughput maximization
(WTM), where the objective function to be maximized is∑

i wi log2(1 + SINRi). Here, wi is user i’s weight and
log2(1+ SINRi) is user i’s achievable data rate (bps/Hz). Re-
searchers have spent significant amount of efforts on studying
this WTM problem in the past. For example, the authors in
[11] considered the high SINR regime where the SINR of each
link is much larger than 0dB, in which case the individual
data rate can be approximated by log2(SINRi). Under such
approximation, the WTM problem can be transformed into a
convex one in the form of geometric programming (GP) by
proper change of variables, and thus can be solved efficiently
in a centralized fashion. A different approach was considered
in [8], where the authors showed that the feasible SINR region
is convex in the logarithm of SINR. This also explains why
the approximation and convexification in [11] are suitable
under the high SINR regime. Unfortunately, the high-SINR
assumption is not valid in general for practical wireless ad-
hoc networks when nearby links heavily interfere with each
other. As a result, standard GP often yields a solution that
is far from optimum due to possible strong interferences
between links nearby. Compared with GP, the work in [12]
does not require the high-SINR assumption. In particular, the
authors in [12] first transformed the WTM problem into an
equivalent signomial programming (SP), which is provably NP
hard to solve. Then the authors adopted a successive convex
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programming method, SP Condensation (SPC) algorithm to
solve SP. Similar to many algorithms used to solve non-
convex optimization, the SPC algorithm only guarantees local
optimal solutions. An improper initialization may considerably
degrade the system throughput. To date, achieving a global
optimal solution of the WTM problem still is an open problem.

In this paper, we propose the MAPEL (MLFP-bAsed PowEr
aLlocation) algorithm, which is the first algorithm in the
literature that can achieve the global optimal solution of the
WTM problem in the general SINR regime. There are three
key observations that enable MAPEL to efficiently solve the
non-convex optimization problem. First, the objective function
of WTM is monotonically increasing in SINR. This means
the optimal solution is achieved at the boundary of the
feasible SINR region. Second, the objective function of WTM
can be transformed into a product of exponentiated linear
fractional functions, which can be further formulated into a
multiplicative linear fractional programming (MLFP) problem
with nice computational features. Last, the feasible set of the
equivalent transformed problem, although may be not convex,
is always normal1. This, together with monotonicity, allows
us to construct a sequence of polyblocks to approximate that
SINR region boundary with an increasing level of accuracy.
Given an arbitrary small and finite error tolerance level,
MAPEL is guaranteed to find one global ε− optimal solution
of the WTM problem within finite amount of time. On the
other hand, a global optimal solution is guaranteed if we do
not enforce a finite running time. A flexible tradeoff between
performance and convergence time can be achieved by tuning
the approximation factor.

MAPEL provides an important benchmark for all algo-
rithms that are designed to tackle the WTM problem, whether
it is existing or to be proposed, centralized or distributed, opti-
mal or heuristic. In this paper, we show how such benchmark
is useful in evaluating the performance of two state-of-art
centralized and distributed algorithms ([12], [13]) in this area.

Finally, we note that some work has been done (e.g., [4],
[10]) on the problem of maximizing the minimum achievable
SINR of each link in wireless networks. This is motivated
partially by fair allocation among various users in the net-
work. All existing algorithms for solving this problem are
centralized. Interestingly, our MAPEL algorithm can be easily
adapted to solve the same max-min optimization problem in a
different and also centralized manner. We will briefly discuss
this extension as well.

The remainder of this paper is organized as follows. System
model is discussed in Section II. In Section III, we transform
the WTM problem into a MLFP problem. Some properties of
the feasible region in the MLFP problem are also discussed.
The MAPEL algorithm is proposed and analyzed in Section
IV. A brief discussion on the extension to the max-min SINR
problem is also provided. In Section V, we evaluate the
performance of MAPEL through several simulations. With the
benchmark established by MAPEL, we evaluate the perfor-
mance of two existing algorithms in Section VI. The paper is
concluded in Section VII.

Throughout the paper, vectors are denoted in bold small

1Various math preliminaries and definitions are given in Section III.

letters, e.g., z, with its ith component zi. Matrices are denoted
by bold capitalized letters, e.g., Z, with Zij denoting the
{i, j}th component. Sets are denoted by Euler letters, e.g.,
A.

II. SYSTEM FORMULATION

We consider a wireless ad hoc network with a set M =
{1, · · · , M} of distinct links2. Each link includes a transmitter
node Ti and a receiver node Ri. The channel gain between
node Ti and node Rj is denoted by Gij , which is determined
by various factors such as path loss, shadowing and fading
effects. The complete channel matrix is denoted by G = [Gij ].
Let pi denote the transmission power of link i (i.e., from node
Ti), and ni denote the receiving noise on link i (i.e., measured
at node Ri). The received SINR of link i is

γi(p) =
Giipi∑

j �=i

Gjipj + ni
, (1)

and the data rate calculated based on the Shannon capacity
formula is log2(1 + γi(p)) 3. To simplify notations, we use
p = (pi, ∀i ∈ M), P max = (Pmax

i , ∀i ∈ M) and γ(p) =
(γi(p), ∀i ∈ M) to respectively represent the transmission
power vector, the maximum transmission power vector and
achieved SINR vector of all links.

We want to find the optimal power allocation p∗ that
maximizes the weighted sum throughput subject to individual
data rate constraints. Mathematically, we want to solve the
following optimization problem:

maximize
M∑
i=1

wi log2(1 + γi(p))

subject to log2(1 + γi(p)) ≥ ri,min, ∀i ∈ M,

variables 0 ≤ pi ≤ Pmax
i , ∀i ∈ M.

(P1)

Here ri,min ≥ 0 is the minimum data rate requirement of
link i (including the special case of ri,min = 0, i.e., no
rate constraint), and wi > 0 is the priority weight of link
i. Without loss of generality, the weights wi are normalized

so that
M∑

i=1

wi = 1. Notice that if ri,min’s are too large, there

may not exist a feasible solution to Problem P1.
For a user i, its received SINR value needs to be at least

γi,min = 2ri,min − 1 in order to satisfy its minimum rate
requirement. Consider the following matrix B

Bij =

{
0, i = j
γi,minGji

Gii
, i �= j.

According to Theorem 2.1 in [1], if the maximum eigenvalue
of B is larger than 1, then there is no feasible solution to
Problem P1. Otherwise, we can find a power allocation p̂ as
follows:

p̂ = (I − B)−1u, (2)

2For example, this could represent a network snapshot under a particular
schedule of transmissions determined by an underlying routing and MAC
protocol.

3To better model the achievable rates in a practical system, we can re-
normalize γi by βγi, where β ∈ [0, 1] represents the system’s “gap” from
capacity. Such modification, however, does not change the analysis in this
paper.
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where I is the M × M identity matrix and u is a M × 1
vector with elements

ui =
γi,minni

Gii
.

By Theorem 2.2 in [1], Problem P1 is feasible if and only if the
components of p̂ satisfies 0 ≤ p̂i ≤ Pmax

i for all i. Therefore,
the procedure of checking the feasibility of Problem P1 is as
follows:

Procedure 1 Feasibility check of rate constraints ri,min’s in
Problem P1

1: Transform minimum data constraints into minimum SINR
constraints through γi,min = 2ri,min − 1 for all i.

2: Compute the maximum eigenvalue of matrix B and check
if it is smaller than 1. If not, ri,min’s are infeasible.
Otherwise, go to step 3.

3: Compute the power allocation p̂ according to (2) and
check if it satisfies 0 ≤ p̂i ≤ Pmax

i for all i. If so, ri,min’s
are feasible. Otherwise, ri,min’s are infeasible.

It has been shown that (e.g., [11]–[14]) Problem P1 is a
non-convex optimization problem in terms of the transmission
power p. Thus, it is difficult to find a global optimal solution
efficiently even in a centralized fashion. In Section III, we
will show Problem P1 can be transformed to a Multiplicative
Linear Fractional Programming (MLFP) problem, which can
then be solved efficiently by the MAPEL algorithm presented
in Section IV.

III. POWER CONTROL AS MULTIPLICATIVE LINEAR

FRACTIONAL PROGRAMMING (MLFP)

In this section, we first introduce the definition of General-
ized Linear Fractional Programming, and show that Problem
P1 can be formulated as a special case of the GLFP (which we
refer to as MLFP). We further discuss several key properties
of the new formulation that are critical for developing the
MAPEL algorithm.

Definition 1 (GLFP): [15] An optimization problem be-
longs to the class of Generalized Linear Fractional Program-
ming (GLFP) if it can be represented by one of the following
two formulations:

maximize Φ
(

f1(x)
g1(x)

, · · · ,
fM (x)
gM (x)

)
variables x ∈ D

(3)

or

minimize Φ
(

f1(x)
g1(x)

, · · · ,
fM (x)
gM (x)

)
variables x ∈ D,

(4)

where the domain D is a nonempty polytope4 in RN (the N -
dim real domain), functions f1, · · · , fM , g1, · · · , gM : RN →
R are linear affine on RN , and function Φ : RM → R is
increasing on RM

+ (the M -dim nonnegative real domain).

4Polytope means the generalization to any dimension of polygon in
two dimensions, polyhedron in three dimensions, and polychoron in four
dimensions.

By the properties of the logarithm function, we can rewrite
Problem P1 as follows,

maximize
M∏
i=1

(
fi(p)
gi(p)

)wi

variables p ∈ P ,

(P2)

with the feasible set

P = {p|0 ≤ pi ≤ Pmax
i ,

fi(p)
gi(p)

≥ 2ri,min, ∀i ∈ M}, (5)

which is a nonempty polytope in RM . Here fi(p) = Giipi +∑
j �=i

Gjipj + ni and gi(p) =
∑
j �=i

Gjipj + ni for all i. It is

clear that the objective function of Problem P2 is a product
of exponentiated linear fractional functions, and the function

Φ(z) =
M∏
i=1

(zi)wi is an increasing function on RM
+ . That is,

for any two vectors z1 and z2 such that z1 is component-
wise larger than or equal to z2 (denoted by z1 � z2), we
have Φ(z1) ≥ Φ(z2). Therefore, Problem P2 is a special case
of GLFP, which we refer to as Multiplicative Linear Fractional
Programming (MLFP) due to the multiplicative nature of the
objective function.

We further note that fi(p) and gi(p) in Problem P2 are
always strictly positive due to the existence of positive noise
power ni. Based on this, we can further rewrite Problem P2
as

maximize Φ(z) =
M∏
i=1

(zi)wi

variables z ∈ G,

(P3)

where the feasible set

G = {z|0 ≤ zi ≤
fi(p)
gi(p)

, ∀i ∈ M, p ∈ P}. (6)

Since Φ(z) is an increasing function in z, the optimal solution
to Problem P3, denoted by z∗, must occur at places where
zi = fi(p)

gi(p) for all i. If we can find a power allocation p∗

corresponding to the optimal solution z∗ such that z∗i = fi(p
∗)

gi(p∗)
for all i, then such p∗ is clearly the optimal solution to Prob-
lem P2. Finding such p∗ requires solving M linear equations
z∗i gi(p∗) − fi(p∗) = 0 with M variables p∗1, · · · , p∗M . As the
coefficients of fi(p∗) and gi(p∗) consist of random channel
gains Gij ’s, we can show with probability 1 that the M
equations are linearly independent, implying there is a unique
solution p∗. Hence, Problems P1, P2 and P3 are all equivalent
with each other. We will focus on how to solve Problem P3
efficiently in the rest of the paper.

Before attempting to solve Problem P3, it is critical to
understand several important properties of the feasible set
G in (6). The following definitions will be useful in later
discussions.

Definition 2 (Box): Given any vector v ∈ RM
+ , the hyper

rectangle [0, v] = {x|0 	 x 	 v} is referred to as a box with
vertex v 5.

According to this definition, the feasible set G can be
characterized as a union of infinite number of boxes with

5In this paper, 0 is a 1 × M vector with every element being 0, and 1 is
a 1 × M vector with every element being 1.
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Fig. 1. Shapes of G and Θ for a two-link network

vertices of all boxes belonging to the set {c|ci = fi(p)
gi(p) , ∀i ∈

M, p ∈ P}. Each element in this set is determined by a power
vector p that is feasible in Problem P1 (and Problem P2).

Definition 3 (Normal): An infinite set F ⊂ RM
+ is said to

be normal if for any element v ∈ F , the set [0, v] ⊂ F .
Proposition 1: The intersection and the union of normal

sets are still normal sets.
Remark 1: A box is normal. Since the feasible set G of

Problem P3 is the union of infinite number of boxes, it is a
normal set.

Fig. 1 illustrates one possible example of the shape of G in
a 2-link network. Note that G is in general a non-convex set.
However, this paper shows that convexity of the feasible set is
not important in obtaining the global optimal solution. It is
the monotonicity of the objective function in the reformulated
problem P3 that facilitates efficient calculation of the global
optimal solution.

Before leaving this section, note that fi(p)
gi(p) is lower bounded

by 2ri,min for p ∈ P . Consequently, the optimal solution z∗

to Problem P3, which occurs only at places where zi = fi(p)
gi(p)

for all i, is also lower bounded by (2ri,min, ∀i ∈ M). In other
words, the optimal solution z∗ must reside in the set G ∩ Θ,
where Θ = {z|zi ≥ 2ri,min, ∀i ∈ M}.

IV. THE MAPEL ALGORITHM

In this section, we propose a novel algorithm, MAPEL,
to solve Problem P3 based on the special characteristics
of MLFP. The key idea of MAPEL largely comes from
the recent advances in global optimization including mono-
tonic optimization and fractional programming [15][16]. Some
mathematical preliminaries will be introduced first before we
present the algorithm.

A. Related Mathematical Preliminaries

Definition 4 (Polyblock): Given any finite set T ⊂ RM
+

with elements vi, the union of all the boxes [0, vi] is a
polyblock with vertex set T .

Definition 5 (Proper): An element v ∈ T is proper if there
does not exist ṽ ∈ T such that v �= ṽ and ṽ � v. If every
element v ∈ T is proper, then the set T is a proper set.

Proposition 2: If Φ(v): RN
+ → R+ is an increasing func-

tion of v, then the maximum of Φ(v) over a polyblock occurs
at one proper vertex of this polyblock.

Proof: Let v∗ be a global optimal solution of Φ(v) over a
polyblock S. If v∗ is not a proper vertex of S, then ṽ � v∗

for some proper vertex ṽ �= v∗. Since Φ(v∗) ≤ Φ(ṽ) due
to the increasing property of Φ(v), it follows that ṽ is also
a global optimal solution of Φ(v), which is a contradiction
to v∗ being a global optimal solution. Hence, Proposition 2
follows immediately. �

Definition 6 (Projection): Given any nonempty normal set
F ⊂ RM

+ and any v ∈ RM
+ \ {0}6, πF (v) is a projection of

v on F if πF(v) = λv with λ = max{α|αv ∈ F}. In other
words, πF(v) is the unique point where the halfline from 0
through v meets the upper boundary of F .

Definition 7 (Upper boundary): A point y ∈ RM
+ is an

upper boundary point of a bounded normal set F if y ∈ F
while Ky ⊂ RM

+ \ F 7.
We illustrate the above concepts in Fig. 2(a). In Fig. 2(a),

the rectangles a0cv1
8 and b0dv2 represent boxes [0, v1] and

[0, v2], respectively. v1 and v2 are the respective vertices of
these two boxes. The area consisting of rectangles a0cv1 and
b0dv2 represents polyblock S = [0, v1]∪ [0, v2] with proper
vertex set T = {v1, v2}. If we choose any point v3 ∈ S, it
is obvious that the rectangle e0fv3 belongs to polyblock S,
i.e., [0, v3] ⊂ S. Hence, polyblock S is said to be normal.
Being the only intersection of the halfline from 0 through v4

and the upper boundary of S, πS(v4) is a projection of v4

on S. Moreover, if Φ(v) is an increasing function on S, then
Φ(v) ≤ max{Φ(v1), Φ(v2)} for all v ∈ S. In other words,
the maximum of the increasing function Φ(v) occurs only at
either v1 or v2, a proper vertex of S.

Now let us use the above concepts to illustrate how we can
construct a series of polyblocks that approximate a set F with
an increasing level of accuracy.

Proposition 3: Let S ⊂ RM
+ be a polyblock with a proper

vertex set T . Also let F be a nonempty normal closed set
that is contained in S, i.e., F ⊂ S ⊂ RM

+ . For a given vertex
vi ∈ T , let T ′ be the set obtained from T by replacing the
vertex vi with M new vertices, (vi1, · · · , viM ). Here the new
vertex vij = vi − (vi,j − πF

j (vi))ej , where ej is the jth unit
vector of RM

+
9, vi,j is the jth element of the old vertex vi,

and πF
j (vi) is the jth element of the projection πF (vi). Note

that some of the new vertices (vi1, · · · , viM ) might not be
proper. If we further remove all improper elements from set
T ′ and obtain a new set T ∗, then the polyblock S∗ with vertex
set T ∗ satisfies F ⊂ S∗ ⊂ S. In this way, we have constructed
a smaller polyblock S∗ that still contains F .

The detailed proof of Proposition 3 is omitted due to
space limitation, and interested readers are referred to the
Proposition 3 in [15].

We use Fig. 2(b) to illustrate the above procedure. As shown
in Fig. 2(b), given F and S such that F ⊂ S ⊂ R2

+, we can
obtain a polyblock S∗ with proper vertex set T ∗ = {v11, v2}

6In this paper, A \ B denotes the set {x|x ∈ A and x /∈ B}.
7Ky = {y′ ∈ RM

+ |y′ � y and y′ �= y}.
8The rectangle is denoted using four letters in its four vertices.
9In this paper, the jth unit vector of RM

+ , ej , denotes the vector whose
every element is equal to zero except the jth element being 1.
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Fig. 2. Illustration about related mathematical preliminaries for MAPEL
algorithm

satisfying F ⊂ S∗ ⊂ S. T ∗ = {v11, v2} is obtained by
replacing v1 in T = {v1, v2} with v1i = v1 − (v1,i −
πF

i (v1))ei, i = 1, 2, and then deleting the improper element
v12 from T ′ = {v11, v12, v2}.

B. The MAPEL Algorithm

The MAPEL algorithm works as follows. We first check
the feasibility of the minimum data rate requirements ri,min’s
by Procedure 1. If the requirements ri,min’s are infeasible,
there is no feasible power allocation and hence the algorithm
is terminated at once. Otherwise, we construct a polyblock S1

that contains the feasible set of Problem P3, G. Let T1 denote
the proper vertex set of S1. By Proposition 2, the maximum of

the objective function of Problem P3 (i.e., Φ(z) =
M∏
i=1

(zi)wi )

over set S1 occurs at some proper vertex z1 of S1, i.e.,
z1 ∈ T1. If z1 happens to reside in G as well, then it solves
Problem P3 and z∗ = z1. Otherwise, based on Proposition
3 we can construct a smaller polyblock S2 ⊂ S1 that still
contains G but excludes z1. This is achieved by constructing
the vertex set T2 by replacing z1 in T1 with M new vertices
(z11, · · · , z1M ), where z1j = z1 − (z1,j − πG

j (z1))ej , and
then removing improper vertices. We can repeat this procedure
until an optimal solution is found. This leads to a sequence
of polyblocks containing G: S1 ⊃ S2 ⊃ · · · ⊃ G. Obviously,
Φ(z1) ≥ Φ(z2) ≥ · · · ≥ Φ(z∗), where zi) is the optimal ver-
tex that maximizes Φ(z) over set Si. The algorithm terminates
at the kth iteration if zk ∈ G. For practical implementation, we
say zk ∈ G when max

i
{(zk,i−πG

i (zk))/zk,i} ≤ δ where δ > 0
is a small positive number representing the error tolerance
level.

We can further expedite the above process by selecting zk

from a smaller set Tk ∩ Θ, where Θ = {z|zi ≥ 2ri,min, ∀i ∈
M}. This will not affect the convergence or optimality of the
algorithm since the optimal solution z∗ is lower bounded by
(2ri,min , ∀i ∈ M).

A critical step in constructing new polyblocks and checking
the termination criterion is calculating the projection πG(zk).
This is, however, by no means trivial, since the upper boundary
of G is not explicitly known. In particular, πG(zk) = λkzk is
obtained by solving the following max-min problem for λk:

λk = max {α|αzk ∈ G}

= max {α|α ≤ min
1≤i≤M

fi(p)
zk,igi(p)

, p ∈ P}

= max
p∈P

min
1≤i≤M

fi(p)
zk,igi(p)

.

(7)

This is again a generalized linear fractional programming
problem by Definition 1. We solve this problem using the
Dinkelbach-type algorithm in [16] with slight modifications.
The details are shown in Algorithm 110:

Algorithm 1 Max-Min Projection Algorithm (for finding
πG(zk))

1: Initialization: Choose p(0) ∈ [0, P max] and let j = 0.
2: repeat
3: Given p(j), solve λ

(j)
k = min

1≤i≤M

fi(p
(j))

zk,igi(p(j))
.

4: Given λ
(j)
k , solve p(j+1) = argmax

p∈P
min

1≤i≤M
(fi(p) −

λ
(j)
k zk,igi(p)).

5: j = j + 1.
6: until max

p∈P
min

i
(fi(p) − λ

(j−1)
k zk,igi(p)) ≤ 0.

7: The projection is πG(zk) = λ
(j−1)
k zk.

Definition 8 (Q-super linear convergence): [16] A
sequence {sj, j = 1, 2, · · · } ∈ R with the limit s∞
converges Q-super (quotient super) linearly if

lim
j→∞

∣∣∣∣sj+1 − s∞
sj − s∞

∣∣∣∣ = 0. (8)

Theorem 1: The sequence {λ(j)
k , j = 1, 2, · · · } converges

Q-super linearly to the optimal solution.
Proof : Immediate from Theorem 8.7 in [16].
Having introduced the basic operations, we now formally

present the MAPEL algorithm in Algorithm 2.

C. Global Convergence

Theorem 2: The MAPEL algorithm globally converges to
a global optimal solution of Problem P3.

Proof: The MAPEL algorithm generates a sequence {zk}
for k = 1, 2, · · · . Each component is calculated as (9) for
each newly constructed polyblock. We can find a subsequence
{zkn} within the sequence {zk} such that

zk1 = z1 − (z1,i0 − πG
i0

(z1))ei0 , · · · ,

zkn+1 = zkn − (zkn,in − πG
in

(zkn))ein ,
(10)

10In fact, each step 4 of Algorithm 1 is a linear programming in the convex
power domain.
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Algorithm 2 The MAPEL Algorithm
1: Initialization: Check the feasibility of minimum data rate

requirements ri,min’s based on Procedure 1. If ri,min’s are
infeasible, terminate the algorithm. Otherwise, choose the
approximation factor δ > 0, and let k = 1.

2: repeat
3: If k = 1, construct the initial polyblock S1 with vertex

set T1 = {b}, where the ith element of vector b is

bi = max
p∈[0, P max]

fi(p)
gi(p)

= 1 +
GiiP

max
i

ni
, ∀i ∈ M.

It is clear that polyblock S1 is a box [0, b] containing
G. If k > 1, construct a smaller polyblock Sk with
vertex set Tk by replacing zk−1 in Tk−1 with M
new vertices (zk−1 1, · · · , zk−1 M ), where zk−1 j =
zk−1−(zk−1,j −πG

j (zk−1))ej , and removing improper
vertices.

4: Find zk that maximizes the objective function of Prob-
lem P3 over set Tk ∩ Θ, i.e.,

zk = argmax{Φ(z) =
M∏
i=1

(zi)wi |z ∈ Tk ∩ Θ}. (9)

5: Find πG(zk) based on Algorithm 1.
6: k = k + 1.
7: until max

i
{(zk−1,i − πG

i (zk−1))/zk−1,i} ≤ δ.

8: Compute the optimal power allocation p∗ (i.e., optimal
solution to Problem P1) by solving πG

i (zk−1) = fi(p
∗)

gi(p∗)
for all i.

where 1 < k1 < k2 < · · · < kn < · · · . zkn,in denotes the inth
element of vector zkn , where in is the only position in which
zkn+1 differs from zkn . This subsequence can be thought as
the “off-springs” of vertex z1 through a series of projections,
and they are not necessarily adjacent since there might be
projections of other vertices happening in between. It can be
shown that there is at least one such subsequence that has
infinite length. With a slight abuse of notation, let {zkn , ∀n ≥
1} denote one such subsequence. Since πG(zkn) 	 zkn , (10)
implies that z1 � zk1 � · · · � zkn � · · · � (2ri,min, ∀i ∈
M). Hence, lim

n→∞ ‖zkn − zkn+1‖ → 0. From (10) we know
that zkn and zkn+1 only differ in the in’s position, thus

‖zkn − zkn+1‖ = zkn,in − zkn+1,in

= zkn,in − πG
in

(zkn) → 0 when n → ∞.
(11)

Since πG(zkn) = λknzkn and zkn � (2ri,min, ∀i ∈ M), (11)
implies that lim

n→∞λkn = 1. That is,

lim
n→∞ zkn → πG(zkn). (12)

Eqn. (12) implies that the subsequence {zkn} converges to
the boundary of the feasible region G. Since it is a maximizer
over the set Skn , it is also the global optimum of Problem P3.
Note that the MAPEL algorithm terminates once the optimal
solution to Problem P3 is found. Therefore, the convergence
of the subsequence {zkn} guarantees the convergence of the
algorithm to the global optimal solution. �

Before leaving this subsection, note that although MAPEL
is proved to converge to the global optimal solution, the
convergence speed is still an open problem.

D. Trade-off between Performance and Convergence Time

The convergence time of MAPEL is infinite if the approx-
imation factor δ = 0. However, it can be easily shown that
MAPEL always terminates with finite steps when δ > 0 [15].
Next, we analyze the influence of the approximation factor δ
on performance.

Definition 9 (ε-optimal solution): Given an ε ≥ 0, we say
that a vector y ∈ G is an ε-optimal solution of Problem P3 if
Φ(z∗) ≤ (1 + ε)Φ(y).

Theorem 3: The solution obtained by MAPEL is an
ε-optimal solution with ε ≤ δ

1−δ .

Proof : MAPEL terminates when max
i

zk,i−πG
i (zk)

zk,i
≤ δ.

Consequently, together with
M∑
i=1

wi = 1,

Φ(zk)(1 − δ) ≤ Φ(πG(zk)) ≤ Φ(z∗) ≤ Φ(zk)

leading to
Φ(zk) − Φ(πG(zk))

Φ(zk)
≤ δ.

Note that Φ(z∗) ≤ Φ(zk) implies

Φ(z∗) − Φ(πG(zk))
Φ(zk)

≤ δ.

Consequently,

Φ(z∗) − Φ(πG(zk))
Φ(πG(zk))

≤ Φ(zk)
Φ(πG(zk))

δ ≤ δ

1 − δ
,

which leads to the following inequality that proves Theorem
3:

Φ(z∗) ≤ Φ(πG(zk))
(

1 +
δ

1 − δ

)
.

�
Remark 2: We note that δ

1−δ ≈ δ when δ � 1. Fur-
thermore, δ

1−δ is generally a conservative estimate of ε. In
practice, the algorithm often yields a error that is much smaller
than δ.

An advantage of the MAPEL algorithm is that we can trade
off performance for convergence time by tuning δ. The smaller
δ, the longer the algorithm runs and the more accurate the
solution is.

E. Extension to Max-min SINR Power Control

As discussed in the Introduction, some previous work on
power control aimed at maximizing the minimum SINR of
all links. Mathematically, they tried to solve the following
problem

max
p∈P

min
i

γi(p) = max
p∈P

min
i

Giipi∑
j �=i

Gjipj + ni
. (13)

Obviously, this is a generalized linear fractional programming
defined in (3). In fact, this formulation is similar to the
one in described (7). Hence, the Dinkelbach-type algorithm
(Algorithm 1) that is adopted to solve (7) can be easily
extended to solve the max-min SINR problem in (13).
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Fig. 3. Obtained weighted sum throughput and number of iterations for
different approximation factor δ

V. PERFORMANCE EVALUATION OF MAPEL

We illustrate the effectiveness of the MAPEL algorithm
through several examples.

Example 1 (Performance and convergence time tradeoff
through the approximation factor δ): We consider a four-link
network where the links are randomly placed in a 10m-by-10m
area. The resultant channel gain matrix is

G1 =

⎡
⎢⎢⎣

0.4310 0.0002 0.2605 0.0039
0.0002 0.3018 0.0008 0.0054
0.0129 0.0005 0.4266 0.1007
0.0011 0.0031 0.0099 0.0634

⎤
⎥⎥⎦ . (14)

Assume that P max=(0.7 0.8 0.9 1.0)mW, ni = 0.1μW for all
link i, and the priority weights w=(1

6
1
6

1
3

1
3 ). Also we do not

consider minimum data rate constraints in this example.
In Fig. 3, we plot the optimal weighted-sum throughput

obtained by MAPEL, together with the needed number of
iterations versus δ. It is not surprising to see that the algorithm
performance improves with a decreasing value δ, which has
been predicted by Theorem 3. On the other hand, the total
number of iterations increases when δ decreases, and the
change is drastic when δ is close to 0. Moreover, the algorithm
performance is not sensitive to the value of δ. For example,
when δ = 0.1, we achieve a weighted-sum throughput of
4.655bps/Hz that is only 0.025% away from the exact op-
timum. This illustrates that the performance bound obtained
in Theorem 3 is quite loose, and the actual performance could
be much better than the bound. It is also clear that parameter δ
provides a tuning knob for achieving various trade-off between
algorithm performance and convergence time.

Example 2 (Global optimal power allocation): MAPEL
enables us to easily characterize the global optimal solution11

of the WTM problem for an arbitrary wireless network. This
is not possible before without exhaustive search. We consider
a different 4-link network in Fig. 4 as a simple illustrating
example. The length of each link is 4m, while the distances
between Ti to Rj for i �= j, denoted by lij , are proportional

11MAPEL will only find one of the possible many global optimal solutions,
depending on the choice of initial conditions.

d

dd

d
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4R

Fig. 4. A network topology with four links
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Fig. 5. The relationship between optimal transmission power and distance
d

to d. The four links have different channel gains: G11 = 1,
G22 = 0.75, G33 = 0.50, G44 = 0.25. The priority weight
of each link is equal. Meanwhile, Gij = l−4

ij , P max=(0.7 0.8
0.9 1.0)mW, ni = 0.1μW for all i. In Fig. 5, the optimal
transmission power of each link is plotted against the topology
parameter d. It can be seen that when the links are very close
to each other, only the link with the largest channel gain (i.e.,
Link 1) is active with maximum transmission power Pmax

1 ,
while all the other links keep silent. When d increases, a
quantum jump in p2 from 0 to Pmax

2 is observed12. As d
further increases, Link 3 starts to transmit, followed by Link
4. In this particular example, it can be seen that when sum
throughput is to be maximized, priority is always given to
the link with a larger channel gain. Although the result is
neither surprising nor general, this toy example illustrates
the possibility of using MAPEL as a tool to investigate the
characteristics of global optimal solutions to power control
problems.

12In fact, if there are only two active links, they must both transmit at the
maximum power.
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VI. PROVIDING BENCHMARK FOR EXISTING POWER

CONTROL ALGORITHMS

A key application of MAPEL is to provide performance
benchmark for other centralized or distributed algorithms that
have been (or to be proposed) to solve the WTM problem.
With MAPEL, we are able to give quantitative measure-
ments of these algorithms’ performance (e.g., the chances
of achieving global optimal solution and the gap of sub-
optimality) under a wide range of network scenarios (e.g,
different network densities and topologies).

A. Review of Existing Power Control Algorithms

As we mentioned in Introduction, the current existing power
control algorithms are essentially divided into two categories:
centralized and distributed. Here we will review one “repre-
sentative” algorithm from each category that represents the
state-of-art in this area. Notice that the focus here is to show
how MAPEL can be used to provide effective benchmark for
the algorithms that tackle the same problem (i.e., Problem
P1). Readers can choose your favorite algorithm to conduct
the study. Our choice in this section may be biased, and the
selected algorithms may not be “the best”.

1) Centralized algorithm: Signomial Programming Con-
densation (SPC) Algorithm [12]: SPC Algorithm is consid-
ered to be one of the best existing centralized algorithms for
solving Problem P1. It utilizes the fact that Problem P1 can
be rewritten as minimizing a ratio between two posynomials
(i.e., a SP):

minimize
M∏
i=1

gwi

i (p)
fwi

i (p)

variables p ∈ P .

(15)

The key idea of SPC Algorithm is to improve the solution of
Problem (15) through successive approximations until a KKT
point is reached. During each step, the SP is approximated
by a GP, which can be solved efficiently using a centralized
interior point method.

2) Asynchronous Distributed Pricing (ADP) Algorithm
[13]: ADP Algorithm is a distributed algorithm that can
be used to solve Problem P1 without minimum data rate
constraints. In ADP, each link announces a price that reflects
its sensitivity to the received interference, and updates its own
transmission power based on the prices announced by other
links. The price and power values need to be updated itera-
tively and asynchronously until a convergent point is found. To
implement the updates, each link only needs to acquire limited
information from the network. We observe that ADP algorithm
converges very fast in our numerical experiments, mainly
because no stepsize is used in the updates. Its theoretical
convergence to the global optimal point, however, is difficult
to prove in general.

B. Performance Study of SPC Algorithm and ADP Algorithm

In this subsection, we evaluate the performance of both
algorithms through serval examples by utilizing the benchmark
provided by MAPEL.

Example 3 (Probability of achieving global optimal solu-
tion): MAPEL always guarantees global optimality, while the
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Fig. 6. Maximal weighted sum throughput achieved by MAPEL algorithm
as well as SPC algorithm for 500 different initial feasible power allocations
in G1 network

SPC algorithm and the ADP algorithm fail to do so. Using
the same 4-link network given in Example 1 (topology G1),
we simulate both algorithms from 500 random initializations
and show the results in Fig. 6 and Fig. 7, respectively. Then
we change the topology to G2 with channel matrix illustrated
in (16), and simulate both algorithms again in Fig. 8 and Fig.
9, respectively.

G2 =

⎡
⎢⎢⎣

0.1476 0.0105 0.0018 0.0402
0.0034 0.1784 0.0013 0.2472
0.0014 0.0017 0.3164 0.0046
0.0048 0.4526 0.0012 0.6290

⎤
⎥⎥⎦ . (16)

Other system parameters are the same as in Example 1. The
figures show that MAPEL always converges to the global
optimal solution, regardless of the initial power allocation.
On the other hand, the SPC algorithm and the ADP algorithm
are trapped in local optimal solutions from time to time. For
example, Fig. 6 and Fig. 7 show that SPC and ADP algorithms
achieve the global optimal solution 70.8% and 62.6% of the
time, respectively. However, Fig. 8 and Fig. 9 show that in a
different topology SPC and ADP algorithms achieve the global
optimal solution 96% and 93.6% of the time, respectively. In
these four figures, we can find that the probability of achieving
global optimal solution for SCP (or ADP) is sensitive to the
network topology.

Example 4 (Average algorithm performance without mini-
mum data rate constraints): In Fig. 10, we compare the average
performance of the SPC algorithm, the ADP algorithm and the
GP algorithm, with MAPEL under different network densities.
Compared with SPC and ADP, GP [11] approximates and
solves the WTM problem based on high-SINR assumption.
For each fixed total number of links n, we place the links
randomly in a 10m-by-10m area. The length of each link is
uniformly distributed within [1m, 2m]. The priority weight
of each link is equal. Meanwhile, we have Pmax

i =1mW,
ni = 0.1μW, and initial power allocation is fixed at P max/2.
We vary the total number of links n from 1 to 10. Each
point is obtained by averaging over 500 different topologies
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Fig. 7. Maximal weighted sum throughput achieved by MAPEL algorithm
as well as ADP algorithm for 500 different initial feasible power allocations
in G1 network
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Fig. 8. Maximal weighted sum throughput achieved by MAPEL algorithm
as well as SPC algorithm for 500 different initial feasible power allocations
in G2 network

of the same link density. On average, the performance loss
of SPC with respect to the global optimality is about 2%,
thus is quite small. Notice that the performance loss of each
particular realization might be smaller (e.g., 0% when reaching
the global optimality) or much larger (when trapped in a local
optimal). The average performance degradation of the ADP
algorithm is about 10%, which implies that ADP is trapped
in local optimum more often than SPC. Noticeably, the gap
between SPC (or ADP) and the global optimum is not known
before this work, as there is no previous algorithm that can
guarantee the global optimal solution. This is in fact one of
the key contributions of this paper. In addition, Fig. 10 shows
that GP works reasonably well when the network density is
low, where all (or most) links are active and some of them
are indeed in the high SINR regime. However, the gap from
the global optimum is much bigger when the network density
becomes higher, where many links need to be silent in order
to avoid heavy interferences to their neighbors.
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Fig. 9. Maximal weighted sum throughput achieved by MAPEL algorithm
as well as ADP algorithm for 500 different initial feasible power allocations
in G2 network
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Fig. 10. Average sum throughput of different algorithms in n-link networks

Table I gives more detailed statistics about the performance
of the two algorithms. As shown in Table I, SPC achieves
the global optimality with a probability that is always larger
than 65% with the number of links up to 10. In contrast, the
probability of ADP achieving the global optimality can be very
low, e.g., only 0.6% in 10-link networks. It suggests that the
initial power allocation of P max/2 is a good initial point for
SPC, but may not for ADP. On the other hand, we find that
SPC has a high-mean and low-variance average performance
compared to the global optimality, which implies that SPC can
achieve close-to-optimal performance with the initial power
allocation of P max/2 for most topologies. However, ADP has
a low-mean and high-variance average performance, which
implies that ADP maintains a large degradation for some
topologies.

Example 5 (Average algorithm performance with minimum
data rate constraints): We consider a series of 4-link networks
with minimum data rate constraints on each link. The four
links are randomly placed within a 10m-by-10m area, and the
length of each link is uniformly distributed within the interval
[1m, 2m]. P max=(0.7 0.8 0.9 1.0)mW, ni = 0.1μW for all
i. Meanwhile, the priority weight of each link is equal. In
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TABLE I
OPTIMALITY OF SPC ALGORITHM AS WELL AS ADP ALGORITHM

SPC Algorithm ADP Algorithm

Number Probability of achieving Average Coefficient Probability of achieving Average Coefficient

of Links global optimality performance of variation global optimality performance of variation

2 69.8% 96.9% 7.22% 50.6% 89.6% 17.8%

4 80.4% 98.7% 3.91% 25.0% 94.3% 8.79%

6 77.2% 98.9% 3.13% 6.0% 93.4% 7.89%

8 69.4% 98.8% 2.58% 1.4% 92.7% 7.42%

10 65.6% 98.7% 2.81% 0.6% 92.1% 8.18%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
13.5

14

14.5

15

15.5

16

Data Rate Constraint (bps/Hz)

A
ve

ra
ge

 S
um

 T
hr

ou
gp

ut
 (

bp
s/

H
z)

 

 

MAPEL Algorithm
SPC Algorithm
GP Algorithm

Fig. 11. Average sum throughput of different algorithms versus the data rate
constraint in 4-link networks

Fig. 11, the performance of MAPEL, GP, and SPC is plotted
against the data rate constraint of each link. Each point for
sum throughput on the curves is an average over 500 different
topologies. We eliminate the topologies that are not feasible.
Since ADP algorithm performs poorly in this case, we do not
show its performance here.

It is not surprising to see that the sum throughputs of all
algorithms drop as the data rate constraints become more strin-
gent. One interesting observation is that the gap between GP
and MAPEL becomes smaller when the data rate constraints
are high. This is due to the fact that links are forced to operate
in the high SINR regime when a high data rate is to be ensured.
The assumption made by GP becomes more reasonable in this
case.

VII. CONCLUSION

In this paper, we proposed the MAPEL algorithm that solves
the open problem of weighted throughput maximization in
general interference-limited wireless networks. The MAPEL
algorithm is guaranteed to globally converge to an optimal
solution despite the nonconvexity of the problem. The key
idea behind the algorithm is to reformulate the WTM problem
into an MLFP, and then construct a sequence of shrinking
polyblocks that eventually closely approximate the upper
boundary of the feasible region around the global optimum.
We have also established the tradeoff relationship between
performance and convergence time of the MAPEL algorithm.

Being a centralized algorithm, MAPEL provides an impor-
tant benchmark for performance evaluation of existing and
newly proposed power control heuristics in this area. For
example, by comparing with MAPEL through extensive simu-
lations, we have gained deeper understanding of two state-of-
the-art centralized and distributed power control algorithms:
SPC algorithm and ADP algorithm. Simulations show that
both algorithms achieve close-to-optimal average performance
in the general SINR regime.

This paper helps to pave the way for further study of power
control problems with various objectives and constraints. An
interesting future research direction is to study power con-
trol that maximizes general utility functions, including both
concave and non-concave functions. Optimal power control in
time-varying channels is another challenging topic for future
research.

The MAPEL algorithm presented in this paper is not the
only way to efficiently obtain the global optimal solution.
Variants of the algorithm can be developed to expedite the
convergence and reduce the computational complexity. For
example, it can be proved that the projection of a vertex of
S on G must contain at least one element equal to Pmax

i .
Such characteristics could be used to design a faster projection
algorithm to replace Algorithm 1. Another possibility is to
exploit the shape of the feasible region G.
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