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Abstract—In this paper, we consider a cognitive radio network
where multiple heterogenous secondary users (SUs) compete for
transmissions on idle primary channels. We model this as a
singleton congestion game, where the probability for an SU
to successfully access a channel decreases with the number
of SUs selecting the same channel. In particular, we consider
player-specific payoffs that depend not only on the shares of
the channel but also on different preference constants. Such
system can be modeled as a congestion game, and we study
the price of anarchy (PoA) for four families of such a game:
identical, player-specific symmetric, resource-specific symmetric,
and asymmetric games. We characterize the worst-case PoA in
terms of the number of SUs and channels, and illustrate the
network scenarios under which the worse case performance is
reached. We further illustrate the PoA results with two Medium
Access Control (MAC) schemes: uniform MAC and slotted Aloha.
For both cases, we observe that the average performance of the
game equilibrium is better than the worst-case PoA. Our study
sheds light on how to design stable systems with smaller efficiency
loss of the equilibrium.

Index Terms—Cognitive radio, spectrum sharing, congestion
game, price of anarchy.

I. INTRODUCTION

DUE to the rapid development of wireless technologies
and an exploding increase of wireless applications, the

wireless spectrum resource is becoming scarce. Motivated by
the fact that many licensed spectrum bands are often under-
utilized, cognitive radio has emerged as a promising technol-
ogy to alleviate the spectrum scarcity problem. In cognitive
radio networks, channels owned by licensed primary users
(PUs) can be opportunistically shared by unlicensed secondary
users (SUs), who sense for spectrum holes and compete with
other users for tentatively available channels. Without a central
coordinator in the network, each SU wishes to optimize its
local decision to maximize the expected throughput. It is
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interesting to study how a large group of selfish SUs interact
and compete for multiple channels in a distributed fashion.
With the restriction that each wireless node has only one radio
transceiver, each SU can only access one channel at a time.
The throughput of choosing a channel depends on both the
channel condition and the number of SUs competing for this
channel (i.e., the congestion level). This motivates us to model
the competition of SUs as a singleton congestion game.

Congestion game has long been a useful tool in modeling
problems in job scheduling and selfish routing (e.g., [4], [5]).
Given a set of players and resources in a congestion game, the
payoff of each player depends on the resource it chooses and
the number of players choosing the same resource. Most of the
congestion game models capture the negative congestion effect
through a cost or latency function, which increases with the
number of players sharing the same resource. There exists a
large volume of literature studying the existence, convergence,
and efficiency of Nash equilibrium in these game models (e.g.,
[4], [6], [7]). We are interested in a new subclass of congestion
games, namely covering games [24], which originate from the
classical covering problem. In a maximum coverage problem,
a centralized coordinator chooses k subsets from a finite sets
of weighted elements to maximize the total weight of the
union. While in a covering game, each of the k players
independently chooses a subset of elements to maximize its
payoff. A player’s payoff is the summation of the product of
the weight and a function of number of players having the
same choice for all elements.

In this paper, we generalize the existing covering game
by introducing the preference constant, which represents the
maximum data rate that an SU receives on a channel. In the
most general model (the asymmetric game), different SUs have
different preference constants on the same channel, and an
SU has different preference constants on different channels.
Since this generalization still belongs to the class of congestion
games, we know from [2] that there exists at least one pure
Nash equilibrium. Furthermore, the game enjoys the finite
improvement property that is true for all congestion games.
This property means that the asynchronous best response
updates (where at most one SU updates its channel choice
at any time) will converge to a pure Nash equilibria within
finite number of steps.

We now illustrate our game model with the IEEE 802.22
standard for Wireless Regional Area Networks (WRAN).
Cognitive radio technology [3] is proposed to support the
use of white spaces (i.e., tentatively unused spectrum) in the
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TABLE I
WORST-CASE POA FOR THE DIFFERENT FAMILIES OF GAMES IN TERMS OF K , M , AND GENERAL r(n) FUNCTIONS.

K ≤ M K > M

Identical 1
(K mod M)f(� K

M
�+1)+[M−(K mod M)]f(� K

M
�)

(M−1)+f(K−M+1)

Player-specific symmetric 1 r(�K
M

�)
Resource-specific symmetric f(K)

1+r(K)(K−1)
f(K)

1+r(K)(M−2)+r(K)f(K−M+1)

Asymmetric r(K) r(K)

TV frequency spectrum by unlicensed users. In this standard,
the unlicensed users will have the capability of sensing and
searching for idle channels periodically. When such an idle
channel is found, the SU will connect to a secondary unli-
censed base station and obtain the information regarding the
congestion level of this channel (caused by other SUs) and the
remaining channels. By considering both the channel qualities
(preference constants) and congestion levels, SU can make the
channel choice independently. Since each SU’s choice does
not depend on other SUs’ preference constants, we can ignore
the issue of truth revelation of their own preference constants
to all SUs and the existence of a common control channel.
As we mentioned before, asynchronous best response updates
will lead to a Nash equilibrium among SUs. It leads to a nice
property that the base station is not required to have knowledge
of the preference constants of each SU but only the congestion
level. For the case of no information broadcast by the base
station, there exist learning algorithms (e.g., [31], [29]) that
enable SUs to select channels based on their experiences and
eventually reach the equilibrium.

However, a Nash equilibrium in a covering game does
not achieve social optimality in general. We are interested
in how bad the performance of a Nash equilibrium could
be comparing with the social optimum, i.e., the performance
loss due to competition. In this paper, we will evaluate this
inefficiency of Nash equilibrium by studying the price of
anarchy (PoA). We study several families of congestion games
and characterize the impact of SUs’ selfish behavior on the
social welfare. In particular, we want to understand how the
heterogeneity of preference constants will affect the PoA.

A. Related Work

Cognitive radio has recently emerged as a promising tech-
nology to alleviate the problem of under-utilized spectrum
resources (e.g., [18]–[21]). Game theory has long been a
useful tool to study the problem of wireless resource allocation
(e.g., [25], [27], [33], [34]). In [34], an auction mechanism
is introduced in dynamic spectrum access of cognitive radio
and the algorithm converges to an equilibrium with maximum
spectrum utilization of the system. In [25], the authors applied
cooperative game theory to model the opportunistic spectrum
access of users and designed a distributed algorithm close to
the Nash Bargaining Solution (e.g., [35], [36]). Bayesian game
is used in [33] to solve the distributed radio resource allocation
problem under uncertainty. Recently, congestion game is used
in [9] to model wireless spectrum sharing games where spatial
reuse of wireless channels is taken into account. The cost
of the user, which can be the total interference experienced,

is a function that increases with the number of users in the
network. In [32], the channel switching of SUs in cognitive
radio networks is modeled as a network congestion game,
where a protocol is designed to reach a Nash equilibrium.
The study of the inefficiency of distributed resource allocation
can be found in [8], [28], [26], and [30]. In this paper, we
aim to model spectrum sharing in cognitive radio as player-
specific congestion games, and study the inefficiency of the
Nash equilibria.

The study of inefficiency in system performance due to
selfish behaviors of players (PoA) was initiated by [13].
Vast amount of research has been done on computing the
PoA of congestion games (e.g., [16], and [17]). In particular,
the bounds of PoA for congestion games with linear and
polynomial cost functions were proven in [7] and [14]. Recent
work such as [15] gave the exact PoA for a class of congestion
games with cost functions restricted to a specific set. Most
of the existing work above considered weighted congestion
games only. These weights are resource-specific but not user-
specific.

Congestion games with player-specific payoffs were first
studied in [10]; while a special class of congestion games with
player-specific constants was studied in [12]. It was shown that
pure Nash equilibrium exists for this type of singleton games.
In [11], the authors considered the pure Nash equilibrium for
both the player-specific and weighted congestion game. Cov-
ering game, a new subclass of congestion games, is introduced
in [24]. The author modeled the competition of players with
decreasing payoff function and derived the bounds of PoA. He
also showed the existence of an allocation function that can
lead to the best of PoA. In our paper, we consider specific
allocation functions that correspond to several existing MAC
protocols, and compute the worst-case PoA with respect to the
different choices of weights. Moreover, our study is not only
applicable to resource-specific weights only but also to the
player-specific weights, which is rather new in the literature.

B. Contributions

The main results and contributions of this paper are sum-
marized as follows:

• Application of congestion games in cognitive radio net-
works. To the best of our knowledge, this is the first paper
that applies the model of a new subclass of congestion
games (covering game) to cognitive radio networks with
random MAC schemes. In particular, we consider both
weighted and player-specific congestion games, which
reflect a wide range of application scenarios.

• Price of anarchy analysis of singleton congestion games
with preference constants. With the restriction that each
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SU can only select one channel, we compute the exact
worst-case PoA for all possible values of the number
of SUs K , number of channels M , and a decreasing
allocation function r(n) (see Table I). The function r(n)
depends on the number of competing SUs on a channel,
n. This is different from many prior studies that focused
on finding the close-to-optimal allocation function with
approximation algorithms.

• Insight on better system design. In our analysis, we
can identify network parameters that lead to the worst-
case PoA in each family of games. We also show by
numerical results that on average the Nash equilibria usu-
ally perform better than the worst-case PoA. Our study
sheds light on how to design stable systems with small
efficiency loss by controlling various system parameters
such as the number of SUs competing for channels or
the level of heterogeneity among SUs and channels.

The remaining paper is organized as follows. In Section II,
we describe the game model and present the framework of
congestion game. We give the definition of price of anarchy
(PoA) in our analysis in Section III and show the results for
the four families of games in Section IV, V, and VI. In Section
VII, we illustrate the PoA results with two MAC schemes, and
conclude the paper in Section VIII.

II. GAME MODEL

Consider a wireless cognitive radio network with channels
owned by licensed primary users (PUs). Multiple unlicensed
secondary users (SUs) want to share the channels whenever the
channels are not used by the PUs. Time is divided into discrete
slots. The PU of a particular channel may transmit or be silent
in any given time slot. After sensing all available channels at
the beginning of the time slot, each SU can only select one
channel for transmission due to its hardware limitation. If the
channel turns out to be occupied by the PU, the SU will remain
silent for the rest of the time slot. If the channel is idle, the SU
will try to transmit on the channel if it is the only user. If there
are more than one SU selecting the same idle channel, an SU
can transmit on the channel with some probability depending
on the choice of medium access control (MAC) schemes. The
probability of successful transmission decreases as the number
of SUs selecting the same channel increases.

Furthermore, the data rates perceived by different SUs
vary based on their respective channel gains and geographical
locations. From an SU k’s point of view, the maximum data
rate received for being the sole user on channel m is Rk

m. The
expected data rate of an SU is the product of the maximum
data rate and its probability of successful transmission on
the selected channel. An SU’s goal is to select a channel
that can maximize its expected data rate by considering
both the channel availability and the congestion effect. Such
optimization not only depends on Rk

ms but also on the number
of SUs competing for the same channel.

A. A Congestion Game Framework

Consider the game tuple (K,M, (Σk)k∈K, (πk
m)k∈K,m∈M),

where K = {1, ...,K} is the set of SUs, M = {1, ...,M} the
set of channels, and Σk the set of pure strategies for SU k.

Since all SUs have the same available channel set and each
SU can select a single channel only, we have Σk = M for
all k. A pure strategy profile is given by σ = (σ1, ..., σK),
where σk ∈ Σk denotes the channel that SU k selects. The set
of strategy profiles is denoted by Π = Σ1 × Σ2 × ... × ΣK .
We denote by n(σ) = (n1, ..., nM ) the congestion vector
corresponding to the strategy profile σ. Each of nm(σ) is the
number of SUs selecting channel m under strategy profile σ.
To simplify notation, we will also use nm to denote nm(σ).

We assume that each SU selecting channel m has an equal
probability r(nm) of succeeding in its transmission with the
following properties:

• SU k must be able to transmit when it is the only user
selecting a channel. Therefore, r(1) = 1 by definition.

• The more SUs on a single channel, the less chance each
SU transmits successfully, i.e., r(nm) is a decreasing
function of nm.

• The sum of probabilities of successful transmission for
all SUs cannot exceed 1, i.e., nmr(nm) ≤ 1.

We denote the total probability of successful transmission
by all SUs on a single channel with

f(n) =

{
0, if n = 0.
nr(n), if n ≥ 1.

In some medium access control games, the collisions of
secondary transmissions would reduce the total probability of
successful transmission. In addition, the reduction would be
less significant when there already exists a large number of
SUs. This motivates us to make the following assumption.

Assumption 1: The function f(n) is non-increasing and
convex in n, i.e., f(n2) ≤ f(n1) and f(n1) − f(n1 + 1) ≥
f(n2)− f(n2 + 1) for n1 < n2.

This assumption is naturally satisfied in many applications.
For example, in a medium access control game in cognitive
radio networks, the collisions of secondary transmissions
reduce the probability of successful transmission. This results
in a lower efficiency and hence a smaller value of f(n) with
an increasing number of players.

Corollary 1: Assumption 1 implies that r(n) is a decreas-
ing and convex function in n.

Due to limit of space, the proof can be found on the online
technical report [23].

The goal of each SU k is to select a single channel that
maximizes its own expected data rate, i.e., maxm∈Σk

πk
m.

The expected data rate of SU k for selecting channel m is
πk
m = Rk

mr(nm) where Rk
m (the preference constant) denotes

the maximum data rate received by SU k for being the sole
user selecting channel m. The strategy profile σ is a Nash
equilibrium if and only if no SU can improve its expected
data rate by deviating unilaterally, i.e., for each SU k ∈ K,

Rk
σk
r(nσk

) ≥ Rk
j r(nj + 1), ∀j ∈ M and j �= σk.

To facilitate the discussion, we will use the term (K,M)-
game to represent a game with K SUs and M channels. Based
on the different values of Rk

m, we classify the congestion game
into several families depending on the heterogeneity of SUs
and channels.

• Identical game: all channels are the same for all SUs,
i.e., Rk

m = R for k ∈ K and m ∈ M.
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• Player-specific symmetric game: different SUs have dif-
ferent preferences for channels, but each SU has the same
preference constant for different channels, i.e., Rk

m = Rk

for k ∈ K and m ∈ M.
• Resource-specific symmetric game: all SUs have the same

preference constant for the same channel, but have dif-
ferent preferences for different channels, i.e., Rk

m = Rm

for k ∈ K and m ∈ M.
• Asymmetric game: this is the most general case where

each channel is different for different SUs, i.e., Rk
m can

be different for each k ∈ K and m ∈ M.

III. PRICE OF ANARCHY (POA)

The families of identical and resource-specific symmetric
games belong to the class of congestion games which always
has a pure Nash equilibrium [4]. The existence of Nash
equilibrium can be proved in a similar fashion by showing
that there exists an ordinal potential function [22]. For every
pure strategy profile σ, the exact potential function is given
by Φ(σ) =

∑
m∈M

∑nm(σ)
n=1 r(n). This function increases as

SUs update their strategies myopically and is upper-bounded,
and hence a pure Nash equilibrium always exists. For the
families of player-specific symmetric and asymmetric games,
it is shown in [10] that singleton congestion games with
player-specific payoffs also have at least one Nash equilibrium.

A Nash equilibrium is the stable outcome of distributed
selfish behavior by all SUs. It is not difficult to imagine that
such behavior often leads to the loss of social welfare. Given
at least one Nash equilibrium exists in our game, a natural
question to ask is how far the Nash equilibrium is from the
social optimum. One metric to quantify this is the price of
anarchy (PoA), which is the focus of this paper.

Before defining PoA, let us define the social optimum
and the efficiency ratio. Denote the total expected data rate
received by all SUs at a strategy profile σ as

SUM(σ) =
∑
k∈K

πk
σk

=
∑
k∈K

Rk
σk
r(nσk

).

Definition 1: The social optimum opt of the game is the
maximum total expected data rate received by all K SUs
maximized over all strategy profiles1,

opt = max
σ∈Π

SUM(σ).

Any strategy profile σ that leads to a social optimum is
called a socially optimal solution. Similar to the Nash equi-
libria, there can be multiple σ’s (i.e., SU-channel assignments)
that lead to the same social optimum.

Definition 2: The efficiency ratio of a Nash equilibrium σ
is the ratio between the total expected data rate received at
that equilibrium and the social optimum,

ER(σ) =
SUM(σ)

opt
.

1Such social optimum can be achieved, for example, through a centralized
scheduler who tells each SU which channel to select. The congestion cannot
be completely avoided even at a socially optimal solution as long as K > M .

Definition 3: The price of anarchy (PoA) of a game is
the worst-case efficiency ratio among all pure strategy Nash
equilibria,

PoA(K,M,R) = min
σ∈Γ

SUM(σ)

opt
= min

σ∈Γ
ER(σ). (1)

Here R = {Rk
m, ∀k ∈ K, ∀m ∈ M} denotes the preference

constants of all SUs and Γ represents the set of pure strategy
Nash equilibria. There is a slight difference between the
PoA defined here and the one defined in many prior works
(e.g., [13]). Since we are maximizing total expected data
rate instead of minimizing cost, the social optimum is the
largest value among all possibilities. Thus, PoA defined here
never exceeds 1, and the worst Nash equilibrium achieves the
smallest efficiency ratio and thus the PoA.

In general, PoA is defined for a particular game with all
parameters specified. For our model, these parameters include
the number of SUs (K), number of channels (M ), and the
preference constants (Rk

m’s). The PoA is the worst-case ratio
among all Nash equilibria and the social optimum in such
a game. We can further extend the concept of PoA from a
game to a family of games. In particular, we are interested
in the smallest value of PoA among all possible choices of
preference constants. This is referred to as the worst-case PoA
defined below.

Definition 4: The worst-case PoA of a family of games is
the minimum one over all possible preference constants, i.e.,
minR PoA(K,M,R).

As we will see, we can often compute the worst-case
PoA without having to consider all possible combinations of
preference constants.

To begin with, we consider the trivial case of M = 1. When
there is one channel, all SUs have no choice but to select the
only channel. The total expected data rate at Nash equilibrium
is the same as the social optimum, hence PoA=1. Similarly,
when only one SU accesses a particular channel, there does
not exist any efficiency loss. This is because that the SU can
fully utilize the channel without worrying about the possible
contention with other SUs.

When multiple SUs accessing the same channel, collision
of SUs can occur and reduce the utilization of channel (i.e.,
f(n) < 1 in slotted Aloha). However, since each SU only
wants to maximize its own expected data rate in the game,
such multi-user contention can happen and thus leads to
social welfare loss. Consider an example of two SUs and
two channels. At a Nash equilibrium, two SUs might compete
on the same channel, while the other channel is left unused.
The social welfare can be maximized by allowingtwo SUs
access different channels. In the rest of the paper, we will
look at the nontrivial case of M ≥ 2. The main idea is to
compare the total expected data rate at Nash equilibrium and
at a socially optimal solution. Since different families of games
impose different constraints on the preference constants, the
proof techniques vary across the families. Due to page limit,
we only provide proof sketches for most of the results. For
details, please see the online technical report [23].
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IV. POA ANALYSIS OF IDENTICAL GAMES

The simple case of identical games may model the case
when all SUs are located close-by and have the same trans-
mission power. With the condition Rk

m = R, we can identify
both the Nash equilibria and social optimum explicitly.

Consider K SUs in an identical game. Denote σk to be the
channel selected by SU k. Then, the total expected data rate
of all SUs is

∑
k∈K

πk
σk

=
∑
k∈K

Rk
σk
r(nσk

) =
∑
k∈K

Rr(nσk
)

= R
∑

m∈M
nmr(nm) = R

∑
m∈M

f(nm).

By definition, all SUs have the same preference constant for
all channels, i.e., Rk

m = R for all SU k ∈ K and all channel
m ∈ M. This results in the second equality where Rk

σk
= R.

The second last equality results from a change of summation
from SUs to channels.

Proposition 1: For an identical (K ,M )-game with prefer-
ence constant R, the total expected data rate at a socially
optimal solution is

opt =

{
RK, if K ≤ M.
R(M − 1) +Rf(K −M + 1), if K > M.

Proof: If the number of SUs is no larger than the number
of channels (i.e., K ≤ M), then each SU selecting a different
channel leads to the social optimum RK . This is because
nr(n) ≤ r(1) = 1, thus preventing SUs from sharing chan-
nels. When there are more SUs than channels (i.e., K > M ), it
is optimal to add the additional K−M SUs to a single channel.
This is due to the non-increasing and convexity properties of
f(n), so that f(n1)+ f(n2) ≤ f(1)+ f(n1+n2− 1) for any
n1, n2 ≥ 1. Hence, we have opt = R(M−1)+Rf(K−M+1)
for K > M .

In the special case of f(n) = 1 for any n (i.e., the channel
is always fully utilized for transmission no matter how many
SUs share it), the total expected data rate is independent of
the number of SUs selecting it as long as it is positive. The
social optimum in this case is Rmin(K,M).

Next, we compute the total expected data rate at different
Nash equilibria2 and hence the PoA.

Theorem 1: For an identical (K,M)-game3 with M > 1,
PoA ={

1, if K ≤ M.
(K mod M)f(� K

M
�+1)+[M−(K mod M)]f(� K

M
�)

(M−1)+f(K−M+1)
, if K > M.

Proof: (Sketch) Consider an arbitrary Nash equilibrium
σ = (σ1, ..., σK) with the congestion vector n(σ) =
(n1, ..., nM ), where

∑
m∈M nm = K . For each SU k,

Rr(nσk
) ≥ Rr(nj + 1), ∀k ∈ K, ∀j ∈ M �= σk. It is

an SU’s best response to select the least congested channel
given other SUs’ fixed choices. This results in an “even”
distribution of SUs on all channels. We can identify the

2There in general exist multiple Nash equilibria for different “pairing” of
SUs and channels. However, the total expected data rate at all Nash equilibria
is the same in an identical game and the identities of SUs are not important.

3The modulo operation (a mod n) is the remainder on division of a by
n, and the floor function �a� is the largest integer not greater than a.

congestion vectors corresponding to different Nash equilibria,
and all these different vectors lead to the unique value of
SUM(σ). With the result in Proposition 1, we obtain the
PoA for identical games. Details can be found on the online
technical report [23].

Theorem 1 implies that the PoA is independent of the
preference constant R, and hence is the same as the worst-
case PoA (minR PoA(K,M,R)).

Remark 1: (Asymptotic PoA) Let K = tM + y, where t is
a positive integer and 0 ≤ y < M , then Theorem 1 can be
written as PoA = yf(t+1)+(M−y)f(t)

(M−1)+f((t−1)M+y+1) . If M is fixed and

t → ∞, then PoA = limt→∞
Mf(t)

M−1+f(t) . When the number
of SUs also increases to infinity, the PoA gets smaller and
approaches limt→∞ f(t) eventually.

V. POA ANALYSIS OF SYMMETRIC GAMES

We now consider the intermediate class of symmetric games
where constraints are imposed on the preference constants
across SUs and channels. Symmetric games can be further
divided into two categories: player-specific symmetric games
and resource-specific symmetric games.

A. Player-specific Symmetric Games

SUs are often not identical in practice. They may use
different technologies, have different channel conditions, or
have different transmission power. This means that different
SUs might achieve different transmission rates on the same
channel.

For player-specific symmetric game, different SUs have
different preferences for channels, but each SU has the same
preference constant for different channels, i.e., Rk

m = Rk for
k ∈ K and m ∈ M. Without loss of generality, we assume
SUs are arranged in descending order of their preference
constants, i.e., R1 ≥ R2 ≥ ... ≥ RK .

Proposition 2: For a player-specific symmetric (K,M)-
game, the total expected data rate at a socially optimal solution
is

opt =

{ ∑K
k=1 R

k, if K ≤ M.∑M−1
k=1 Rk + r(K −M + 1)

∑K
k=M Rk, if K > M.

Proof: We first show that exactly K channels are selected
at any socially optimal solution for K ≤ M . Suppose σ =
(σ1, ..., σK) is a strategy profile that leads to the optimum.
By considering its corresponding congestion vector n(σ) =
(n1, ..., nM ), the M channels can be divided into 3 sets:

• S0 = {m ∈ M : nm = 0} denotes the set of unused
channels

• S1 = {m ∈ M : nm = 1} denotes the set of channels
selected by 1 SU

• S2 = {m ∈ M : nm > 1} denotes the set of channels
selected by more than 1 SU

If there exists a channel i ∈ S2, then there must also exist
a channel j ∈ S0. This is because the number of SUs is no
more than the number of channels.

Since Rkr(1) > Rkr(n) for all k ∈ K and n > 1, we know
that deviation of an SU from channel i to channel j always
improves the total expected data rate. Therefore σ is not a
socially optimal solution. This argument can be successively
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applied until all channels are either unused or selected by one
SU, such that S2 = φ. We then conclude that the optimum is
obtained when exactly K channels are selected. In this case,
each SU selects a different channel in the social optimum.

For the case of K > M , we first show that for any two
channels that are shared among SUs, it is always optimal
to assign a channel to the largest SU (SU with the largest
preference constant), and let the remaining SUs share the other
channel. This can be shown by the fact that Ri[r(1)−r(n1)] ≥
Rj [r(n2)− r(n1 + n2 − 1)] for indices i < j. We then check
from the largest SU to see if it is the only user on a channel.
We continue with the other SUs in the descending order. As
a result, each of the first M − 1 SUs selects one channel by
itself and the remaining SUs share the last channel.

Theorem 2: For the family of player-specific symmetric
(K,M)-game with M > 1, the worst-case PoA4

min
R

PoA(K,M,R) = r(	K
M


).
Proof: The best response of SU k ∈ K at a Nash

equilibrium is σk if and only if Rk
σk
r(nσk

) ≥ Rk
j r(nj +

1), ∀j ∈ M and j �= σk. Since the preference constants
of all channels for a single SU is the same in a player-specific
symmetric game, each SU’s best response is similar to that in
identical games. This results in an “even” distribution of SUs
on all channels, where the difference of number of SUs on any
two channels is no greater than 1 in any Nash equilibrium, i.e.,
|ni − nj | ≤ 1, i, j ∈ M.

For K ≤ M , the “even” distribution of SUs in Nash equilib-
rium implies that every SU selects a different channel, which is
the same as in the socially optimal solution. Therefore, PoA=1.

For K > M , the total expected data rate at both the Nash
equilibrium σ and the social optimum can be determined. In
particular, if (K mod M) = 0, then the efficiency ratio is

ER(σ) =
r(�K

M �)∑K
k=1 R

k∑M−1
k=1 Rk + r(K −M + 1)

∑K
k=M Rk

.

This can be lower-bounded by r(�K
M �) as r(K−M +1) ≤ 1.

The lower bound can be achieved when some K−M+1 SUs
have a preference constant that is significantly small when
compared with the other M − 1 SUs. Similarly, when (K
mod M) �= 0, we can show that the efficiency ratio is lower-
bounded by r(�K

M �+ 1) and is achievable.
Remark 2: (Asymptotic PoA) Let K = tM + y, where t is

a positive integer and 0 ≤ y < M . If M is fixed and t → ∞,
then PoA = limt→∞ r(t).

For the family of player-specific symmetric games, we
can identify the possible Nash equilibria, which achieve an
even distribution of SUs on different channels. Hence, PoA
is known once the preference constants Rk

ms are known. The
worst-case PoA results from a significant difference in the
preference constants between two groups of SUs.

B. Resource-specific Symmetric Games

In practice, different channels can have different bandwidths
and thus can provide different data rates even for the same SU.
This motivates us to study the resource-specific symmetric

4The ceiling function �a� is the smallest integer not less than a.

game. More specifically, all SUs have the same preference
constant for the same channel, but have different preferences
for different channels, i.e., Rk

m = Rm for k ∈ K and m ∈ M.
Consider K SUs in a resource-specific symmetric game.

Without loss of generality, we assume channels are arranged
in descending order of preference constants of SUs, i.e., R1 ≥
R2 ≥ ... ≥ RM . Denote σk to be the channel selected by SU
k. Then, the total expected data rate of the SUs is∑

k∈K
πk
σk

=
∑
k∈K

Rσkr(nσk)

=
∑

m∈M
Rmnmr(nm) =

∑
m∈M

Rmf(nm)

where
∑

m∈M nm = K .
Proposition 3: For a resource-specific symmetric (K,M)-

game, the total expected data rate at a socially optimal solution
is

opt =

{ ∑K
j=1 Rj , if K ≤ M.∑M−1
j=1 Rj +RMf(K −M + 1), if K > M.

Proof: The idea of proof is similar to that of Proposition
2. Details can be found on the online technical report [23].

Theorem 3: For the family of resource-specific symmet-
ric (K,M)-game with M > 1 and more SUs than num-
ber of channels (i.e., K > M ), the worst-case PoA is

f(K)
1+r(K)(M−2)+r(K)f(K−M+1) .

Proof: Suppose there exists a Nash equilibrium σ with
congestion vector n(σ) = (n1, ..., nM ). The set of channels
not selected by any SUs is denoted by H and

∑
m∈M\H nm =

K . With the best-reply strategy at Nash equilibrium, i.e.,
Rjr(nj) ≥ Rk for all j ∈ M \ H and k ∈ H, we have∑

m∈M\H Rjf(nj) ≥ KRk for all k ∈ H.
With the social optimum obtained in Proposition 3, we can

calculate the efficiency ratio at σ,

ER(σ) =
SUM(σ)

opt
=

∑
j∈M\H Rjf(nj)∑M−1

j=1 Rj +RMf(K −M + 1)
.

We now show that for every Nash equilibrium σ, we can
construct another Nash equilibrium γ with the same number
of SUs and channels where ER(γ) ≤ ER(σ).

Consider a game where the preference constants for all SUs
on channel 2 to channel M are the same, Rcr(K); and the
constant for channel 1 is Rc. A Nash Equilibrium γ of this
game is that all SUs select channel 1. The efficient ratio of γ
is

ER(γ) =
Rcf(K)

Rc +Rcr(K)(M − 2) +Rcr(K)f(K −M + 1)
.

We can find a specific Rc that equates the denomina-
tors of ER(σ) and ER(γ). With the inequalities from
the best response strategy, we see that Rcf(K) <∑

j∈M\H Rjf(nj). This shows that all the Nash equilibria
is lower-bounded by ER(γ) which can be simplified as

f(K)
1+r(K)(M−2)+r(K)f(K−M+1) . This lower bound is achievable
and hence the worst-case PoA.

Remark 3: (Asymptotic PoA) When the number of SUs
is significantly larger than channels (i.e., M is fixed and
K → ∞), the worst-case PoA becomes limK→∞ f(K) as
limK→∞ r(K) = 0.
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Theorem 4: For the family of resource-specific symmetric
(K,M)-game with M > 1 and number of SUs no more than
channels (i.e., K ≤ M ), the worst-case PoA is f(K)

1+r(K)(K−1) .
Proof: First arrange the channels in the descending order

of preference constants. Since the last M −K channels will
not be selected either in the socially optimal solutions or any
Nash equilibrium, we can safely discard them. Therefore, the
problem is reduced to a resource-specific symmetric (K,K)-
game and Theorem 3 applies.

VI. POA ANALYSIS OF ASYMMETRIC GAMES

Now let us consider the most general case where preference
constants are different for different SUs on different channels.
The social optimum is difficult to compute in this case.
However, it turns out that we can compute the worst-case PoA
by exploiting the properties of the social optimum without
specifying the SU-channel associations explicitly.

Proposition 4: For an asymmetric (K,M)-game,
min(K,M) of channels are selected at a socially optimal
solution.

Proof: (Sketch) We first consider a simple case with two
channels, where one channel is selected by more than one SU
(and thus congested) and the other channel remains unused.
We show by contradiction that the total expected data rate
can always be improved by switching an SU from a congested
channel to the unused channel. Using a similar argument as in
the proof of Proposition 2, we show that exactly K channels
are selected at any socially optimal solution when K ≤ M and
all M channels are selected at any socially optimal solution
when K > M . Details can be found on the online technical
report [23].

We will compute the exact worst-case PoA in two steps.
We first give a lower bound for the efficiency ratio, and then
show that the bound is achievable.

Lemma 1: For an asymmetric (K,M)-game with M > 1,
the lower bound of efficiency ratio is r(K).

Proof: We consider two cases separately: K ≤ M and
K > M . For the case of K > M : we consider an equilibrium
σ = (σ1, σ2, ..., σK), where Rk

σk
r(nσk

) ≥ Rk
j r(nj+1) for all

k ∈ K and j ∈ M and j �= σk. Here n(σ) = (n1, n2, ..., nM )
is the corresponding congestion vector of σ. We will also de-
note ω = (ω1, ω2, ..., ωK) as the strategy profile chosen by the
SUs at a socially optimal solution, and q(ω) = (q1, q2, ..., qM )
be the corresponding congestion vector.

By using the inequality
∑

i ai∑
i bi

≥ mini
ai

bi
, we have

ER(σ) =

∑
k∈K Rk

σk
r(nσk

)∑
k∈K Rk

ωk
r(qωk

)
≥ min

k

Rk
σk
r(nσk

)

Rk
ωk
r(qωk

)
.

Assume k̄ = argmink
Rk

σk
r(nσk

)

Rk
ωk

r(qωk
) , we have two possible

scenarios:

• If σk̄ = ωk̄, then

min
k

Rk
σk

r(nσk)

Rk
ωk

r(qωk )
=

Rk̄
ωk̄

r(nωk̄
)

Rk̄
ωk̄

r(qωk̄
)
=

r(nωk̄
)

r(qωk̄
)
≥ r(K)

r(1)
= r(K).

The last inequality is due to the fact that r(n) is a
decreasing function. Therefore, nσk

taking its maximum
value of K while qωk

taking the minimum value of 1

TABLE II
EXAMPLE OF AN ASYMMETRIC GAME WITH EFFICIENCY RATIO r(K)+ δ

player \ resource 1 2 · · · M
1 R Rr(K) · · · Rr(K)
2 ε εr(K) · · · εr(K)
...

...
...

K ε εr(K) · · · εr(K)

leads to the lower bound. Here K SUs select channel ωk

in the Nash equilibrium while only SU k̄ selects the same
channel at the socially optimal solution.

• If σk̄ �= ωk̄, then

min
k

Rk
σk
r(nσk

)

Rk
ωk
r(qωk

)
=

Rk̄
σk̄
r(nσk̄

)

Rk̄
ωk̄
r(qωk̄

)
≥ Rk̄

ωk̄
r(nωk̄

+ 1)

Rk̄
ωk̄
r(qωk̄

)

=
r(nωk̄

+ 1)

r(qωk̄
)

≥ r(K)

r(1)
= r(K).

The first inequality is due to SU k̄’s best response at
the Nash equilibrium where Rk̄

σk̄
r(nσk̄

) ≥ Rk̄
ωk̄
r(nωk̄

+

1). The lower-bound is obtained when SU k̄ switches
its strategy at the Nash equilibrium to that in the social
optimum. The last inequality follows a similar argument
as before.

The efficiency ratios in both cases are lower-bounded by
r(K). The detailed proof for the case of K ≤ M is given in
the online technical report [23].

Lemma 2: For any δ > 0, there exists an asymmetric
(K ,M )-game with M > 1 that has an efficiency ratio r(K)+δ.

Proof: (Sketch) We now consider an asymmetric (K ,M )-
game with M > 1, where the preference constants Rk

m are
shown in Table II. The parameter ε in the table is chosen
as a function of δ for different cases of K ≤ M and
K > M . We can identify one Nash equilibrium σ where
all SUs select channel 1. With the characteristic of the social
optimum identified in Proposition 4, the efficiency ratio in
both cases are r(K) + δ. Furthermore, we show that ε is an
increasing function of δ. When ε goes to zero, δ goes to zero
and the efficiency ratio equals r(K). Details can be found on
the online technical report [23].

Theorem 5: For the family of asymmetric (K,M)-game
with M > 1, the worst-case PoA is r(K).

Proof: Lemmas 1 and 2 together lead to Theorem 5.
The worst-case PoA of asymmetric games is achieved when

all SUs select the same channel; while the maximum data rate
(or the preference constant) for one of the SUs is significantly
larger than the remaining SUs. Although this Nash equilibrium
leads to severe efficiency loss, we show numerically in later
section that it occurs rarely.

VII. ILLUSTRATION WITH TWO MAC SCHEMES

The worst-case PoA depends highly on the number of SUs
(K), the number of channels (M ) and the MAC scheme (r(n))
in game. In the following, we will consider two MAC schemes
and see how the worst-case PoA changes with different
congestion levels.
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Fig. 1. Worst-case PoA of different families of games in uniform MAC with
M = 10.

A. Uniform MAC

When there are n SUs competing for a channel, the simplest
way to resolve the conflict is to allow each SU to grab the
channel with an equal probability 1

n . This can be achieved as
follows. An SU who has selected an idle channel will pick a
random countdown value within a fixed time window Y and
continue to sense the channel for presence of other SUs. An
SU will proceed to transmit if its countdown timer expires and
no other SUs have started the transmission on the channel.
Otherwise, if the channel is being used, the SU loses the
opportunity to sense or transmit in other channels and remains
idle till the next slot. In this case, only one of the many SUs
can transmit on a channel at a particular time slot. Assuming
Y is large enough, then the probability of getting the channel
is 1

n . This simple model captures the case where competition
only introduces uncertainty in terms of who can access the
channel without wasting the channel.

Under this uniform MAC scheme, we can compute the exact
worst-case PoA5 for all families of games with r(n) = 1

n and
f(n) = 1. The numerical results are given in Figure 1, where
there are M = 10 channels and the number of SUs K varies
from 1 to 80.

From the figure, we can see that the Nash equilibria in
identical games always achieve the social optimum. When the
competition is more severe (i.e., the number of SUs is much
greater than channels), the asymptotic PoA of identical and
resource-specific symmetric games approaches 1; the asymp-
totic PoA of player-specific symmetric and asymmetric games
approaches 0. The worst-case PoA computed are monotonic
with an increasing number of SUs except in resource-specific
symmetric games. The PoA first decreases, then increases, and
finally converges to 1 (when K is large enough; not shown
in the figure). The drop at the beginning is mainly due to
the incomplete usage of channels when the number of SUs
is small. It is because different channels can provide different
transmission rates. The worst-case PoA happens when there
exists a channel that is significantly better than the others,
so that SUs tend to contend on the same channel and leave
other channels unused. With an increasing number of SUs,
the probability of having unused channels reduces. As the
number of SUs continues to increase, eventually all channels
are selected. Hence, the worst-case PoA approaches 1.

To see how an arbitrary Nash equilibrium performs, we

5Similar results for this special case has been shown in a conference version
of the paper [1].
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Fig. 2. Efficiency ratios of different families of games with number of SUs,
K = 7 under uniform MAC. In the figure, each star represents the efficiency
ratio of a Nash equilibrium and the circle represents the worst-case PoA for
given number of SUs and channels.

run 30 simulations for each test case and the preference
constants for each family of games are randomly generated
from U(0, 1). In Figure 2, each star represents the efficiency
ratio of arbitrary Nash equilibrium and the circle represents
the worst-case PoA for given number of SUs and channels.
We can observe from the graph that most Nash equilibria have
efficiency ratios much greater than the worst-case PoA, except
in identical games where all Nash equilibria are the same.
Despite the fact that worst-case PoA for asymmetric games are
much lower than the other families of games, the efficiency
ratios of Nash equilibria are rather stable (above 0.8 when
there are 7 SUs). This is likely because the probability for the
worst case to occur is very low due to the uniform distribution
of the preference constants. Although there is a discrepancy
for the Nash equilibria compared with the social optimum, the
performance is not that bad even in the case of asymmetric
games.

B. Slotted Aloha

Here we look at another common MAC protocol, the slotted
Aloha, where the competition among SUs over the same
channel reduces the total utilization of that channel.

In slotted Aloha, after an SU senses an idle channel, it will
decide whether to contend for transmission with some proba-
bility. An SU can successfully transmit on the channel when
it is the only user. If two or more SUs transmit on the same
channel, all transmissions fail. Since SUs do not have prior
knowledge of how the other choose the contention probability,
they can only assume all SUs selecting the same idle channel
have the same transmission probability p independent of the
data rates the SUs receive. Given n SUs selecting the same
channel, the probability for an SU to transmit successfully
is given by r(p, n) = p(1 − p)n−1. Since each SU aims to
maximize its expected data rate, it is equivalent to selecting
the common transmission probability p to maximize r(p, n).
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Fig. 3. Worst-case PoA of different families of games in slotted Aloha with
M = 10.
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Fig. 4. Efficiency ratios of different families of games with number of SUs,
K = 7 under slotted Aloha. In the figure, each star represents the efficiency
ratio of a Nash equilibrium and the circle represents the worst-case PoA for
given number of SUs and channels.

Under the optimal choice of p, we have

r(n) =

(
1

n

)(
1− 1

n

)n−1

, and

f(n) =

⎧⎨
⎩

0, if n = 0
1, if n = 1
(1 − 1

n )
n−1, if n > 1

.

We verify in [23] that the above function satisfies Assump-
tion 1. The worst-case PoA can be computed by plugging the
functions r(n) and f(n) into the results in Sections IV, V,
and VI.

The worst-case PoA for the slotted Aloha scheme can be
observed in Figure 3, where the number of channels M = 10
and the number of SUs K varies between 1 and 80. One
may note that the asymptotic PoA for identical and resource-
specific symmetric games converges to limK→∞ f(K) = 1

e
instead of 1 as in uniform MAC. The significant loss of
performance can be found even in the identical games. SUs
tend to spread out in a Nash equilibrium, which leads to
significant losses comparing to the social optimum where the
loss is restricted to a single channel only.

The efficiency ratios for arbitrary Nash equilibrium under
slotted Aloha can be found in Figure 4. The value of efficiency
ratios in slotted Aloha in general smaller than that in uniform
MAC. The player-specific and resource-specific symmetric
games have a larger chance to reach the worst-case PoA; the

average performance of Nash equilibria in asymmetric games
is much better than the worst-case PoA.

C. Insights for system design

Comparing the two MAC schemes, uniform MAC is more
preferable than slotted Aloha as it does not lead to resource
waste. When the ideal uniform MAC is not possible to
implement in practice, it is always good to design the channel
access scheme that makes the total probability of successful
transmission f(n) as close to 1 as possible. We also notice
that Nash equilibria in identical games can achieve the social
optimum. This means that we should reduce the variance
of parameters among SUs and channels in order to have a
better system efficiency. When it is not possible to make the
game fully symmetric, we observe that player-symmetric game
achieves a better PoA than resource-symmetric game when the
number of SUs is smaller than channels. To avoid the worst
case when SUs have dramatically different data rates on the
same channel, we can use admission control to filter out SUs
with very poor channel conditions.

VIII. CONCLUSION

In this paper we model the competition of SUs in a cognitive
radio network with singleton congestion games with different
preference constants. With the existence of at least one Nash
equilibrium, we derive the exact worst-case PoA for identical,
player-specific symmetric, resource-specific symmetric, and
asymmetric games. We also identify several possible outcomes
that lead to the worst-case PoA. By illustrating the results
with uniform MAC and slotted Aloha, we observe from the
numerical results that the efficiency ratios of Nash equilibria
are in general better than the worst-case PoA. With the given
network parameters, we can design systems with smaller
efficiency loss by controlling the number of SUs competing
for primary channels, or controlling the heterogeneity among
different channels and SUs.

It is more interesting to study scenario where the SUs can
sense/select more than one channel, for example, enabled by
multiple radio interfaces. When the share on each channel
is proportional to the number of accessing radios and the
data rate of a SU is additive across channels, each SU can
be decomposed to several virtual single-radio SUs (depending
on how many radios the SU has). Our PoA analysis in this
paper applies to this case. However, the above decomposition
is not always possible for general multichannel access games.
We are certainly interested in further pursuing this interesting
research direction.
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