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Abstract— Most of the previous work on inter-session network
coding assumed that the users are not selfish and always follow
the designed coding schemes. However, recent results have shown
that selfish and strategic users do not have an incentive to
participate in inter-session network coding in a static non-
cooperative game setting. Because of this, the worst-case network
efficiency (i.e., the price-of-anarchy) can be as low as 20%. In this
paper, we show that if the same game is played repeatedly, then
the price-of-anarchy can be significantly improved to 36%. In this
regard, we design a grim-trigger strategy that encourages users to
cooperate and participate in the inter-session network coding. A
key challenge here is to determine a common cooperative coding
rate that the users should mutually agree on. We resolve the
conflict of interest among the users through a bargaining process,
and obtain tight upper bounds for the price-of-anarchy which are
valid for any possible bargaining scheme. Moreover, we propose a
simple and efficient min-max bargaining solution that can achieve
these upper bounds. Our results represent an important first step
towards designing practical inter-session network coding schemes
which achieve reasonable performance for selfish users.

I. INTRODUCTION

Since the seminal paper by Ahlswede et al. [1], a rich body
of work has been reported on how network coding can improve
performance in both wired and wireless networks [2]–[4].
In general, network coding is performed by jointly encoding
multiple packets either from the same user (i.e., intra-session
network coding, e.g., as in [1], [2]) or from different users (i.e.,
inter-session network coding, e.g., as in [3]–[5]). A common
assumption in most existing network coding schemes is that
the users are cooperative and do not pursue their own interests.
However, this assumption can be violated in practice.

In non-cooperative network coding, each user individually
decides on whether to use and how to use network coding to
maximize its own payoff. However, in inter-session network
coding, users will need to rely on each other as they need
to receive some remedy packets to decode the coded data
that they receive at their destinations. This leads to a game
among users. Recent results in [6], [7] show that if the inter-
session network coding game is played only once (i.e., as a
static game), then users do not have the incentive to provide
each other with the needed remedy packets. In that case, no
network coding is performed at a Nash equilibrium. This
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significantly affects the network performance; the price-of-
anarchy (PoA), i.e., the worst-case efficiency compared with
the optimal network performance, can be as low as 20% [6].

In this paper, we study the more realistic scenario where
the inter-session network coding game in [6] is likely to be
played repeatedly. This reflects the case where users have
many packets to transmit. As users continue sending more
packets, they can take into account the history of the game
(e.g., whether the other users have provided the needed remedy
packets in the past) and plan their future actions accordingly.

It is well known that repeated interactions can encourage
cooperation among users [8]–[11]. However, the key challenge
in our model is that it is not immediately clear for the inter-
session network coding users how they should cooperate. This
introduces a bargaining problem among the users to search
for a mutually acceptable network coding rate. We show that
a “good” bargaining solution together with a grim-trigger
strategy can be used to encourage cooperation in inter-session
network coding. We also analyze the general properties of
all possible bargaining schemes, and provide universal upper
bounds on the PoA for any bargaining scheme. In this regard,
we show that the PoA in the repeated game can be improved
to 36%, and can be reached by using a min-max bargaining
scheme. The contributions of this paper are as follows:
• New Formulation: To the best of our knowledge, we

are the first to formulate non-cooperative inter-session
network coding as a repeated resource allocation game.

• Equilibrium Strategy Design: We show that a grim-trigger
strategy can form a subgame perfect equilibrium for the
repeated inter-session network coding game, as long as
the network coding users can agree on the inter-session
network coding rate. Reaching such an agreement is non-
trivial in general. It involves solving a bargaining problem
that resolves the conflict of interest among users.

• Performance Bounds for All Bargaining Schemes: We
characterize the general properties of all possible bargain-
ing schemes and show that, for any bargaining scheme,
the PoA of the repeated inter-session network coding
game is upper-bounded by 36% (when the network in-
cludes both network coding and routing users) and 48%
(when the network includes only network coding users).

• Simple and Efficient Bargaining Solution: We propose a
novel min-max bargaining scheme, which can reach the
aforementioned performance upper bounds for the widely
used class of α-fair utility functions.

The results in this paper are different from the existing
results on network coding games, e.g., [6], [7], [12]–[21].
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TABLE I
SUMMARY OF THE RESULTS ON THE ACHIEVABLE POA FOR STATIC AND

REPEATED INTER-SESSION NETWORK CODING GAMES.

Players Static Game Repeated Game
Two Network Coding Users 22% 48%
Network Coding and Routing Users 20% 36%
Reference [6] This Paper

The studies in [12]–[16], [20], [21] focused on intra-session
network coding, while here we address inter-session network
coding. Similar to [7], [17], we study inter-session network
coding in a butterfly network topology. However, we further
investigate the impacts of users’ utility functions, link costs,
and the PoA. Moreover, unlike the system models in [7], [17],
[18], [22], we address the case where the network includes
both network coding and pure routing users. Finally, we study
repeated games, while the results in [6], [7], [12]–[19] are for
static network coding games. A key motivation of this study
is our prior work on static network coding games in [6], with
the comparison of main results given in Table I.

The rest of this paper is organized as follows. In Section
II, we introduce the system model and review the static game
results in [6]. The repeated game is formulated in Section
III. Our results on subgame perfect equilibrium, bargaining,
and the PoA bounds are given in Section IV. The min-max
bargaining solution and its PoA are discussed in Section V.
Numerical results are presented in Section VI. Conclusions
and directions for future work are provided in Section VII.

II. SYSTEM MODEL AND BACKGROUND

Consider the network topology in Fig. 1, which is usually
referred to as a butterfly network in the network coding
literature1. It consists of N ≥ 2 end-to-end users and three
wired links. The bottleneck link (i, j) is shared by all users
N = {1, . . . , N}. For each user n ∈ N , the source and the
destination nodes are denoted by sn and tn, respectively. There
are two direct side links (s1, tN ) and (sN , t1), which allow
users 1 and N to perform inter-session network coding as we
explain next. We first distinguish two different types of users:
• Network Coding Users: Users 1 and N , who can perform

inter-session network coding.
• Routing Users: Users 2, . . . , N − 1, who cannot perform

inter-session network coding.
The network coding users 1 and N can mark their packets

(e.g., by setting a single-bit flag in the packet header) for either
routing or network coding. On the other hand, routing users
2, . . . , N − 1 can setup all their packets only for routing. At
the intermediate node i, all packets that are marked for routing
are simply forwarded to node j through link (i, j). However,
the packets that are marked for network coding are treated
differently. Let X1 and XN denote two packets which are
marked for network coding and are sent from nodes s1 and sN
to node i, respectively. Node i can encode packets X1 and XN

(e.g., using XOR encoding [23]), and send the resulting packet,

1Although the network coding scenario in Fig. 1 is simple, it can be used as
a building block for more general scenarios. For example, [2], [3] showed that
a network can be modeled as a superposition of several butterfly networks.
Thus, understanding Fig. 1 is a key to understand more general networks.
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Fig. 1. A butterfly network with N unicast sessions, called users. Users 1 and
N are network coding users. They can perform inter-session network coding
over links (i, j), (s1, tN ), and (sN , t1). Users 2, . . . , N−1 are routing users.
Packet X1 ⊕XN is obtained by joint encoding of packets X1 and XN .

denoted by X1⊕XN , towards node j (and from there to t1 and
tN ). Given the remedy data X1 from the side link (s1, tN ) and
the remedy data XN from the side link (sN , t1), nodes tN and
t1 can decode their own data packets XN and X1 based on
the encoded packets they receive from the intermediate node
j. Clearly, the benefit of network coding is to reduce the traffic
on bottleneck link (i, j), by sending only one packet X1⊕XN

rather than two packets X1 and XN .
We define the following notations for data rates in Fig. 1:
• yn: Transmission rate of sending routing packets from

node sn to node i, for each user n ∈ N .
• zn: Transmission rate of sending network coding packets

from node sn to node i, for each user n ∈ {1, N}.
• vn: Transmission rate of sending remedy packets from

node sn over its side link, for each user n ∈ {1, N}.
In this paper, we make the following key assumption.
Assumption 1: The users are autonomous and have full

control over their own transmission rates. Furthermore, the
network coding users 1 and N individually indicate, via
marking, whether their packets should participate in inter-
session network coding or simply be forwarded over link (i, j).

In this setting, the intermediate node i encodes packets
at rate min{z1, zN}, and forwards the rest of the packets,
without encoding their contents at rate

∑N
n=1 yn + |z1 − zN |.

For example, if z1 = 3 Mbps and zN = 5 Mbps, then only
min{z1, zN} = 3 Mbps will be network coded and zN −z1 =
2 Mbps of user N ’s packets will be treated as routing packets.
Thus, the total rate on bottleneck link (i, j) becomes∑N

n=1 yn + max{z1, zN}. (1)

Considering the effective rates at the destinations, nodes tn
for n = 2, . . . , N − 1 receive information at rate yn, while
the destination nodes t1 and tN receive information at rates
y1+min{z1, vN} and yN+min{zN , v1}, respectively [6].

A. Utility, Cost, and Price Functions

We assume that each user n ∈ N has a utility function
Un, representing its evaluation of the achieved data rate. Link
(i, j) has a cost function C, which depends on its total traffic
load

∑N
n=1 yn + max{z1, zN}. Similarly, links (s1, tN ) and

(sN , t1) have cost functions C1 and CN , which depend on
their loads v1 and vN , respectively.
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Assumption 2: The utility functions U1, . . . , UN are con-
cave, non-negative, increasing, and differentiable [24].

Assumption 3: The link cost functions are given as

C(q) = a
2 q

2, ∀q ≥ 0, (2)

C1(q) = b1
2 q2, ∀q ≥ 0, (3)

CN (q) = bN
2 q2, ∀q ≥ 0, (4)

where a > 0, b1 > 0, and bN > 0. The convex quadratic
cost functions in (2)-(4) are related to linear price functions
p(q) = aq, p1(q) = b1q, and pN (q) = bNq. In fact, C(q) =∫ q
0
p(θ)dθ, C1(q) =

∫ q
0
p1(θ)dθ, and CN (q) =

∫ q
0
pN (θ)dθ.

Quadratic cost and linear price functions are the only cost
and price functions that satisfy the four axioms of rescaling,
consistency, positivity, and additivity in cost-sharing systems
[25]. They are often used in network resource management
(cf. [26]–[28]) to model either actual transmission cost (e.g.,
in dollars) or simply the queueing delay on each link.

B. Optimization-based Resource Allocation

Let y = (y1, . . . , yN ), v = (v1, vN ), and z = (z1, zN ).
The network aggregate surplus is defined as the total utility
achieved by the users minus the total cost of the links:

S(y, z,v) =
∑N−1
n=2 Un (yn) + U1 (y1+min{z1, vN})

+ UN (yN + min{zN , v1})− C1(v1)

− CN (vN )− C(
∑N
n=1 yn + max{z1, zN}).

(5)

Given complete knowledge and centralized control of the
network in Fig. 1, we can compute the efficient rate allocation
by solving the following optimization problem [26]–[32].

Problem 1 (Network Surplus Maximization Problem):

maximize
y,z,v

S(y, z,v)

subject to yn ≥ 0, n = 1, . . . , N, z1, zN , v1, vN ≥ 0.

Let yS =(yS1 , . . . , y
S
N ), vS =(vS1 , v

S
N ), and zS =(zS1 , z

S
N ) be

an optimal solution for Problem 1. We can verify that vS1 = zS1
= vSN = zSN , i.e., the network coding users send the coded and
remedy packets at the same rate in an optimal rate allocation.

C. Pricing and Resource Allocation Game

If the network has no centralized controller and Assumption
1 holds, pricing can be used to encourage efficient resource
allocation in a distributed fashion [24]. Given the rate vectors
y and z from the users, the shared link (i, j) can set a price

p
(∑N

n=1 yn + max{z1, zN}
)

(6)

for any uncoded data rate it carries, where price function p(q)
is described in Assumption 3. For coded packets, however, it
can set a separate reduced price

σ(y, z) = β p
(∑N

n=1 yn + max{z1, zN}
)
. (7)

Here, β ∈ (0, 1] is the price discrimination parameter, and
the intuition is to charge the coded packets less to encourage
network coding. Note that only the choice of β = 1

2 can avoid
over- or under-charging of network coding users [6].

Assumption 4: Throughout this paper, we set β = 1
2 .

On the other hand, given data rates v for the remedy packets,
side links (s1, tN ) and (sN , t1) set their prices as p1 (v1) and
pN (vN ) for data they carry. Users are charged as follows:
• User 1 pays the following payment to link (i, j):

σ(y, z) min(z1, zN ) + µ(y, z) (z1 −min(z1, zN ))

+ µ(y, z) y1 = µ(y, z) (y1+z1−(1−β) min{z1, zN}) ,

and pays v1 µ1(v1) to link (s1, tN ).
• User N pays links (i, j) and (sN , t1) similarly.
• Each routing user n = 2, . . . , N − 1 pays µ(y, z) yn to

the shared link (i, j).
The users then select their rates to maximize their own

surplus, i.e., utility minus charges [26]–[28]. Clearly, each
user’s surplus also depends on the data rates selected by other
users, leading to a resource allocation game among all users:

Game 1 (Non-cooperative Resource Allocation Game):
• Players: Users in set N .
• Strategies: Transmission rates y, z, and v.
• Payoffs: Pn(·) for each user n∈N , where

P1(y1, z1, v1;y−1, zN , vN ) = U1 (y1 + min{z1, vN})
− v1p1(v1)− (y1 + z1 − (1− β) min{z1, zN})
× p (

∑N
r=1 yr + max{z1, zN}),

PN (yN , zN , vN ;y−N , z1, v1) = UN (yN + min{zN , v1})
− vNpN (vN )− (yN+zN − (1−β) min{z1, zN})
× p (

∑N
r=1 yr + max{z1, zN}),

and for the routing users

Pn(yn;y−n, z,v) = Un(yn)

− ynp (
∑N
r=1 yr+max{z1, zN}),

∀n∈N\{1, N}.

Here, y−n = (y1, . . . , yn−1, yn+1, . . . , yN ) for n ∈ N . Notice
that Game 1 is a static game and is played only once. The
repeated version of Game 1 will be formulated in Section III.

D. Efficiency and Price-of-Anarchy of Game 1

The selfish nature of the players in Game 1 leads to
undesirable and inefficient network performance. To see this,
we first introduce the following definitions for future reference.

Definition 1 (Nash equilibrium): The non-negative rates y∗

= (y∗1 , . . . , y
∗
N ), v∗=(v∗1 , v

∗
N ), and z∗=(z∗1 , z

∗
N ) form a Nash

equilibrium of Game 1 if no user n ∈ N can increase its payoff
Pn(·) by unilaterally changing its own transmission rates. The
Nash equilibrium predicts how Game 1 will be played.

Definition 2 (Efficiency): For a certain choice of system pa-
rameters, the efficiency at Nash equilibrium (y∗,v∗, z∗) is the
ratio of the achieved network aggregate surplus S(y∗, z∗,v∗)
to the optimal network aggregate surplus S(yS , zS ,vS).

Definition 3 (Price-of-anarchy): The price-of-anarchy, den-
oted by PoA(Game 1,Problem 1), is the worst-case efficiency
of a Nash equilibrium among all possible choices of parame-
ters: the number of users and utility, cost, and price functions.

Next, we notice that payoffs P1(·) and PN (·) are decreasing
in v1 and vN , respectively. Thus, selfish network coding users
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1 and N will always choose to send no remedy packets to
avoid payments over the side links. Being aware of this issue,
users 1 and N will not participate in network coding, as
they cannot decode any encoded packets without the remedy
packets. The following results are from [6, Theorem 11].

Theorem 1: (a) Game 1 has a unique Nash equilibrium.
(b) At Nash equilibrium of Game 1, we have

v∗1 = z∗1 = 0 and v∗N = z∗N = 0. (8)

(c) If N = 2, i.e., there is no routing user in the network,

PoA (Game 1,Problem 1) =
2

9
≈ 22%. (9)

(d) If N > 2, i.e., the network includes both network coding
and routing users, then the PoA further reduces to

PoA (Game 1,Problem 1) =
1

5
= 20%. (10)

The results in Theorem 1 are quite negative. By comparison,
the results in [26] showed that the PoA is 67% for a similar
resource allocation game with routing users only. The results
in Theorem 1 imply that although inter-session network coding
can potentially improve network performance, it is more
sensitive to selfish behavior than routing. The key contribution
of this paper is to show that it is possible to design better
strategies with a better PoA when Game 1 is played repeatedly.

III. REPEATED INTER-SESSION NETWORK CODING GAME

Consider the case where Game 1 is played repeatedly. That
is, every time users play Game 1 (called one stage), they will
play Game 1 again with a probability δ. Parameter δ is the
discount factor [8]. A repeated game formulation is natural if
users have many packets to transmit.

If Game 1 is played multiple times, then the strategy space
of the users will expand to include their data rates at each
stage of the game. Let yk = (yk1 , . . . , y

k
N ), zk = (zk1 , z

k
N ),

and vk = (vk1 , v
k
N ) denote the actions chosen by the users

at stage k ≥ 1. At the beginning of stage k, the data rates
that have been already played in stages 1, . . . , k − 1 form
the history of the game, while the data rates to be played in
stages k, k+1, . . . are the strategies of the users. For notational
simplicity, for each 1 ≤ l ≤ m, we define

Rmt=l =
{
yt, zt,vt

}m
t=l

. (11)

In this regard, Rk−1t=1 denotes the history and R∞t=k denotes
the strategies of the users, at each stage k ≥ 1.

Game 2 (Repeated Game 1):

• Players: Users in set N .
• Histories: Data rates Rk−1t=1 , at each stage k ≥ 1.
• Strategies: Contingency plans for selection of rates R∞t=k

at each stage k ≥ 1 for any given history profile Rk−1t=1 .
• Payoffs: Qn(·) for each user n∈N , where at each k ≥ 1,

Qn(R∞t=k|R
k−1
t=1 ) =

∑∞
t=k (δ)t−k Pn(yt, zt,vt).

In Game 2, the single-stage payoffs P1(·), . . . , PN (·) are the
same in Game 1. Payoffs Q1(·), . . . , QN (·) are the discounted
summations of the users’ payoffs in the future. The term

(δ)t−k denotes the probability that Game 2 is played at stage
t ≥ k, given that it is currently played at stage k ≥ 1.

Definition 4 (Subgame): Given a history profile Rk−1t=1 at
stage k ≥ 1 of Game 2, the rest of the repeated game at
stages k, k + 1, . . . is defined as a subgame at stage k.

The solution concept for a repeated game is the subgame
perfect equilibrium which is defined as follows [8]:

Definition 5 (Subgame Perfect Equilibrium): A strategy pr-
ofile R∞k=1 is a subgame perfect equilibrium of Game 2, if
at any stage k, the restricted strategy profile R∞t=k is a Nash
equilibrium for any subgame at stage k formed by every given
history Rk−1t=1 . That is, at any stage and for any history profile,
no user n ∈ N can increase its payoff Qn(·) by unilaterally
changing its own data rates in future stages.

Definition 6 (Efficiency): The efficiency at subgame per-
fect equilibrium R∞k=1 is defined as the average efficiency
among all stages of Game 2, where the efficiency for rates
(yk, zk,vk) at stage k is defined according to Definition 2.

Definition 7 (Price-of-anarchy): The price-of-anarchy, de-
noted by PoA(Game 2,Problem 1), is the worst-case (i.e., the
smallest) efficiency at a subgame perfect equilibrium of Game
2 among all possible choices of system parameters.

IV. PUNISHMENT AND BARGAINING IN INTER-
SESSION NETWORK CODING

In this section, we analyze repeated Game 2 and show the
following. First, a grim-trigger strategy encourages users to
cooperate. Second, if the network coding users cooperate, they
will select the same network coding rates. Third, the common
network coding rate can be determined via bargaining. Finally,
the PoA of Game 2 is better than that of Game 1.

A. Punishment and Grim-trigger Strategy

At the end of each stage of Game 2, user 1 knows whether
user N has cooperated (i.e., sent enough remedy packets such
that user 1 can decode all received encoded packets) during
the current stage. Thus, user 1 can punish user N in the next
stage, if user N has cheated. This is also true for user N .

Network coding users 1 and N may consider various
punishment strategies against a cheating user. For example,
if user N cheats at stage k − 1 of Game 2, then user 1 may
select its data rates (yk1 , z

k
1 , v

k
1 ) to minimize user N ’s payoff

in the next stage. Another option for user 1 is not to participate
in network coding by setting vk1 = zk1 = 0. Punishment
strategies can be either limited scope, lasting for only a few
stages, or unlimited scope, lasting until the game ends. In
this paper, we only consider the case when the punishment
is not to participate in network coding for the rest of the
game. We will show that this simple punishment strategy can
prevent cheating. To start with, we show that if users decide to
cooperate, they should choose the same network coding rates.

Theorem 2: Assume that users select data rates yk, zk, and
vk at a stage k of repeated Game 2 with

vk1 = zk1 > vkN = zkN . (12)
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That is, neither user 1 nor user N cheat, but user 1 wants to
participate in network coding with a higher rate than user N .
Then, user 1 can switch to new rates (ȳk1 , v̄

k
1 , z̄

k
1 ) such that

ȳk1 = yk1 + (zk1 − zkN ), v̄k1 = z̄k1 = vkN = zkN , (13)

to strictly increase its own payoff at stage k, while keeping the
payoff of all the other users unchanged at stage k. A similar
statement is true for user N if vk1 = zk1 < vkN = zkN .

The proof of Theorem 2 is given in Appendix A. From
Theorem 2, if users 1 and N do not plan to cheat and want to
cooperate, they should choose the same network coding rates:

zk1 = vk1 = zkN = vkN , ∀k ≥ 1. (14)

The above can help us to predict how users behave if they
cooperate. However, we still need to answer two questions:

1) Which common network coding rate

zk1 = vk1 = zkN = vkN = z ≥ 0 (15)

should users 1 and N choose in stage k?
2) How do network coding users 1 and N enforce coop-

eration such that they both have the incentive to send
remedy packets at the desired rate z ≥ 0?

We will answer the second question first. The first question
will be answered in Section IV-B when we discuss bargaining.

Next, we explain how the users behave at each stage k ≥ 1
of repeated Game 2 if (15) holds for a pre-determined z ≥ 0.
For the ease of exposition, we define a new static game which
is derived from static Game 1 and is parameterized with z.

Game 3 (Reduced Game 1 for a Given z ≥ 0):
• Players: Users in set N .
• Strategies: Transmission rates y, when the network cod-

ing rates v and z are fixed at

z1 = v1 = zN = vN = z. (16)

• Payoffs: Pn(·) for each user n∈N as in Game 1.

Games 1 and 3 differ only due to (16). Since the network
coding rates are pre-determined, the strategy of the users in
Game 3 is reduced to routing rates y only. From Theorem
1(a), Game 1 has a unique Nash equilibrium. Clearly, the Nash
equilibrium of Game 3 depends on the choice of parameter z.

Given z ≥ 0, we denote the Nash equilibrium of Game 3
by y∗(z). Therefore, the payoff for each user n ∈ N at Nash
equilibrium of Game 3 is denoted by

Pn(y∗(z), z1 =zN =v1 =vN =z). (17)

For example, for the network coding user 1, we have

P1(y∗(z), z) = U1 (y∗1(z) + z)− z p1(z)− (y∗1(z) + βz)

× p (
∑N
r=1 y

∗
r (z) + z).

We now return to repeated Game 2. Clearly, if the network
coding users agree on selecting their network coding rates
according to (15), then at each stage k ≥ 1, the users simply
select their routing data rates to be yk = y∗(z). This helps
us to introduce a strategy profile that can enforce cooperation,
answering our second question posed earlier in this section.

TABLE II
PAYOFFS AT EACH STAGE OF GAME 2 WHEN (20) AND (21) HOLD.

User 2

User 1
Strategy Cooperate Cheat

Cooperate (0.19, 0.12) (-0.08, 0.14)
Cheat (0.24, -0.10) (0.12, 0.08)

Definition 8 (Grim-trigger Strategy): Given a coding rate
z ≥ 0, a grim-trigger strategy [8] for Game 2 is defined as

Step 1: Always participate in network coding according to
the coding rate z from the first stage of Game 2. Consequently,
the users choose the routing rates according to the unique Nash
equilibrium of Game 3 for the given z. That is, at stage k,

• Network coding user 1 sets vk1 = zk1 = z and yk1 = y∗1(z).
• Network coding user N sets vkN=zkN =z and ykN =y∗N (z).
• Routing user n = 2, . . . , N − 1 sets ykn = y∗n(z).

Go to Step 2 if user 1 or N deviates from coding rate z.

Step 2: Refuse network coding forever. That is, at stage k,

• Network coding user 1 sets vk1 = zk1 = 0 and yk1 = y∗1(0).
• Network coding user N sets vkN=zkN =0 and ykN =y∗N (0).
• Routing user n = 2, . . . , N − 1 sets ykn = y∗n(0).
Note that Step 2 is an unlimited scope punishment. Al-

though the punishment is initiated by one of the network
coding users, the routing users also respond by setting their
rates according to the new Nash equilibrium of Game 3 when
no network coding is performed. We can show the following:

Theorem 3: Given a fixed common coding rate z ≥ 0, there
exists a δmin ∈ (0, 1] such that the grim-trigger strategy in
Definition 8 forms a subgame perfect equilibrium for Game 2
if and only if the discount factor δmin ≤ δ ≤ 1 and we have

P1(y∗(z), z) ≥ P1(y∗(0), 0), (18)
PN (y∗(z), z) ≥ PN (y∗(0), 0). (19)

The proof of Theorem 3 is given in Appendix B. Note that
if (18) and (19) hold, it is beneficial for both users 1 and N
to participate in network coding at rate z as in Step 1 instead
of no network coding in Step 2. A larger discount factor δ
implies that Game 2 is more likely to continue, and thus it is
more desirable to cooperate and get better future payoff.

As an example, consider Fig. 1 with only network coding
users (i.e., N = 2). The system parameters are defined as

U1(x) = log(1 + x), U2(x) = 0.75 log(1 + x), (20)

a = 1, b1 = 0.5, b2 = 0.25, β = 0.5. (21)

We can verify that if we select2 z = 0.3, then y∗1(z) = 0.128,
y∗2(z) = 0, and at each stage of repeated Game 2, the
users play a game according to Table II, where the numbers
in each box indicate the payoffs for user 1 and user 2,
respectively. In this example, the grim-trigger strategy is a
subgame perfect equilibrium and the users always cooperate
if discount factor δ ≥ max{ 0.24−0.190.24−0.12 ,

0.14−0.12
0.14−0.08} ≈ 0.38. It

is interesting to notice that the payoffs in Table II resemble
the payoffs in the prisoner’s dilemma game [8, p. 110]. It is

2Here, we chose z by using the min-max bargaining scheme in Section V.
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well-known that players have the incentive to cooperate if the
prisoner’s dilemma game is played repeatedly. However, the
key difference between a repeated prisoner’s dilemma game
and Game 2 is that “cooperation” is not well-defined in Game
2, as it is not immediately clear for the network coding users
which common (and cooperative) coding rate z they should
choose. We will address this issue in the next section.

B. Bargaining

So far, we have assumed that the common network coding
rate z ≥ 0 is given. In this section, we will discuss how the
network coding users 1 and N can agree on the choice of z.

Clearly, network coding user 1 prefers to choose z to

maximize
z≥0

P1(y∗(z), z), (22)

i.e., to maximize its own payoff at each stage of Game 2.
Similarly, user N would select z as the solution of

maximize
z≥0

PN (y∗(z), z). (23)

However, in either case, there is no guarantee that both (18)
and (19) hold. Even if they do, selection of z according to
the solutions of (22) and (23) may not be fair and mutually
acceptable for both network coding users according to As-
sumption 1. A natural way resolve this conflict is to consider
a bargaining problem in cooperative game theory [33], where
two players negotiate on the details of cooperation.

A well-known bargaining solution is the Nash bargaining
solution [34], which is formulated as follows in our context.

maximize
z≥0

(P1(y∗(z), z)− P1(y∗(0), 0))

× (PN (y∗(z), z)− PN (y∗(0), 0))

subject to P1(y∗(z), z) ≥ P1(y∗(0), 0),

PN (y∗(z), z) ≥ PN (y∗(0), 0).

(24)

The objective function is the multiplication of the extra payoffs
users 1 and N achieved by participating in network coding at
rate z ≥ 0. A Nash bargaining solution always exists and is
unique [34]. It leads to a fair division of the cooperation benefit
among the network coding users. A similar but significantly
simpler bargaining solution will be discussed in Section V.

We can also analyze the performance in terms of the
PoA (Game 2,Problem 1) for a given bargaining solution.

Theorem 4: If there are only two network coding users (i.e.,
N = 2), then the efficiency at the subgame perfect equilibrium
obtained by the grim-trigger strategy of any bargaining solu-
tion that satisfies (18) and (19) is no smaller than the efficiency
at the Nash equilibrium of Game 1.

The proof of Theorem 4 is given in Appendix C. Note that
the proof relies on the monotonicity and concavity of the utility
functions. In general Theorem 4 does not hold if N > 2.
Theorem 4 and Theorem 1(c) lead to the following lower
bound for the PoA of Game 2 if N = 2:

PoA (Game 2,Problem 1) ≥ PoA (Game 1,Problem 1) ≥ 2

9
.

The above lower bound holds for any bargaining scheme.

C. Upper Bounds on Price-of-Anarchy of Game 2

As a special case of Theorem 3, the following holds.

Corollary 1: If either

P1(y∗(z), z) < P1(y∗(0), 0), ∀z > 0, (25)

or

PN (y∗(z), z) < PN (y∗(0), 0), ∀z > 0, (26)

then the grim-trigger strategy in Definition 8 is a subgame
perfect equilibrium if and only if the common coding rate is

z = 0, (27)

for any value of discount factor δ ∈ (0, 1]. That is, no network
coding is performed at the subgame perfect equilibrium.

Corollary 1 can help us to find upper bounds for the PoA
of Game 2, which hold for any bargaining scheme. In fact,
for a scenario where either (25) or (26) holds, all possible
bargaining schemes lead to the same bargaining solution3 as
in (27). Therefore, any efficiency value that is obtained in this
case will form an upper bound for PoA (Game 2,Problem 1),
regardless of the choice of the bargaining scheme.

Next, we notice that if the coding rate is z = 0 as in (27),
then Step 1 and Step 2 in the grim-trigger strategy in Definition
8 will be the same and we will have

zk1 = vk1 = zkN = vkN = 0, yk = y∗(0), ∀k ≥ 1. (28)

That is, the users simply play the Nash equilibrium of the
static Game 1 at every stage of the repeated Game 2 (see Eq.
(8) in Theorem 1). This directly results in the next theorem.

Theorem 5: When either (25) or (26) holds, the efficiency at
the subgame prefect equilibrium of repeated Game 2 is equal
to the efficiency at Nash equilibrium of static Game 1.

It is shown in [6, Theorem 11] that the worst-case efficiency
of static Game 1 occurs under the following conditions:

• The utility functions of the users are linear. That is,

Un(x) = γn x, ∀n ∈ N . (29)

• The cost parameters for side links are negligible. That is,

b1 → 0 and bN → 0. (30)

The intuition behind (31) is clear: if the side links have low
cost, then performing inter-session network coding can bring
significant throughput gains to the users without significantly
increasing the cost. Thus, not performing inter-session network
coding in this case will hurt the system performance the most.

The above discussions imply that we expect to find tight
upper bounds for PoA (Game 2,Problem 1) if we can obtain
the worst-case efficiency among all choices of system param-
eters which satisfy (29), (30), and either (25) or (26). In this
regard, we study two cases separately.

1) Two-User Case: Assume that the butterfly network in
Fig. 1 has only two network coding users (i.e., N = 2).

3As an example, if either (25) or (26) holds, then no z > 0 is a feasible
solution for problem (24). Thus, the Nash bargaining solution is z = 0.
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Proposition 1: Given z ≥ 0, if conditions (29) and (30)
hold, then a at Nash equilibrium of the reduced Game 3,

[
y∗1(z)
y∗2(z)

]
=



[
2γ1−γ2−a(1+β)z

3a
2γ2−γ1−a(1+β)z

3a

]
, 0 ≤ z < 2γ2−γ1

a(1+β) ,

[
γ1−a(1+β)z

2a
0

]
, 2γ2−γ1

a(1+β) ≤ z <
γ1

a(1+β) ,

[
0
0

]
, γ1

a(1+β) ≤ z.

Without loss of generality, here we assumed that γ1 ≥ γ2.
The proof of Proposition 1 is given in Appendix D. From

Proposition 1, we can obtain closed-form expressions for
P1(y∗(z), z) and P2(y∗(z), z) for any z ≥ 0 and check
conditions (25) and (26) to determine whether the network
coding users 1 and 2 can reach a non-zero bargaining solution.

Theorem 6: Consider the case where there are only two
network coding users in the network (i.e., N = 2). Among
all possible choices of system parameters such that
• Condition 1: Both (29) and (30) hold, and
• Condition 2: Either (25) or (26) holds

the worst-case efficiency at the subgame perfect equilibrium
of Game 2 is 12

25 and occurs where

a = 1 and γ2 =
γ1
4
. (31)

The proof of Theorem 6 is given in Appendix E. From
Condition 2, our focus is on those scenarios where the only
possible bargaining solution is z = 0 and the repeated Game
2 is played just like the static Game 1. From Condition 1, we
further focus on those scenarios where the static Game 1 has
poor performance. Theorem 6 directly leads to the following.

Theorem 7: Assume that the butterfly network in Fig. 1 has
only two network coding users (i.e., N = 2). If all users play
the grim-trigger strategy in Definition 8, then

PoA (Game 2,Problem 1) ≤ 12

25
= 48%. (32)

The above upper bound holds for any bargaining scheme.
From Theorems 4 and 7, if N = 2, then for any bargaining

scheme, the PoA of Game 2 is between 22% and 48%.
2) General Case: Next, we consider the case where there

is at least one routing user in the network (i.e., N > 2).
Proposition 2: Given a z ≥ 0, if conditions (29) and (30)

hold, then at Nash equilibrium of the reduced Game 3,[
y∗1(z)
y∗2(z)

]
=

[
2γ1−γ2−a(1+β)z−aq∗(z)

3a
2γ2−γ1−a(1+β)z−aq∗(z)

3a

]
, 0 ≤ z < 2γ2−γ1−q∗(z)

a(1+β) ,

[
γ1−a(1+β)z−aq∗(z)

2a
0

]
, 2γ2−γ1−q∗(z)

a(1+β) ≤ z < γ1−q∗(z)
a(1+β) ,

[
0
0

]
, γ1−q∗(z)

a(1+β) ≤ z,

where q∗(z) =
∑N−1
r=2 y∗r (z). Here we assume that γ1 ≥ γN .

The proof of Proposition 2 is similar to that of Proposition 1.
We notice that if N = 2 (and q∗(z) = 0), then the expression
in Proposition 2 reduces to the expression in Proposition 1.

Theorem 8: Consider the case where there are both network
coding and routing users in the network (i.e., N>2). Among
all possible choices of system parameters such that

• Condition 1: Both (29) and (30) hold, and
• Condition 2: Either (25) or (26) holds

the worst-case efficiency at the subgame perfect equilibrium
of Game 2 is 4

11 and occurs at

N →∞, a = 1, γ2 = . . . = γN−1 =
3

4
γ1, γN =

3

8
γ1.

The proof of Theorem 8 is given in Appendix F. Theorem
8 directly leads to the following key result.

Theorem 9: Assume that the butterfly network in Fig. 1 has
both network coding and routing users (i.e., N > 2). If all
users play the grim-trigger strategy in Definition 8, then

PoA (Game 2,Problem 1) ≤ 4

11
≈ 36%. (33)

The above upper bound holds for any bargaining scheme.

We conclude this section by highlighting that the upper
bounds in Theorem 7 and Theorem 9 predict how bad the
efficiency of Game 2 can become when the only possible
bargaining solution is z = 0. The numerical results in Section
VI suggest that these upper bounds can actually be reached
when a simple min-max bargaining scheme is used.

V. MIN-MAX BARGAINING SOLUTION

In general, finding the Nash bargaining solution in (24)
can be difficult even in the simple case when N = 2. In
this section, we propose a simple min-max bargaining scheme
which can be easily implemented among network coding users.

The key idea in the min-max bargaining scheme is to let
each network coding user 1 and N individually make a choice
for the coding rate z, and select the bargaining solution such
that (18) and (19) hold and both users benefit from network
coding. Consider the following set for network coding user 1:

Z1 = {z ≥ 0 | ∀ẑ ∈ [0, z],

P1(y∗(z), z) ≥ P1(y∗(ẑ), ẑ) ≥ P1(y∗(0), 0)} .
(34)

User 1’s payoff P1(y∗(z), z) is monotonically increasing over
set Z1. Furthermore, any z ∈ Z1 satisfies condition (18) and
is acceptable for user 1. Similarly, for user N , we define a set

ZN = {z ≥ 0 | ∀ẑ ∈ [0, z],

PN (y∗(z), z) ≥ PN (y∗(ẑ), ẑ) ≥ PN (y∗(0), 0)} .
(35)

From (34) and (35), both payoffs P1(y∗(z), z) and
PN (y∗(z), z) are monotonically increasing over the intersec-
tion set Z1 ∩ ZN . Therefore, any choice of z ∈ Z1 ∩ ZN
satisfies both (18) and (19) and is a potential bargaining
solution. From Theorem 3, we further have
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Fig. 2. Conflict of interest between network coding users in choosing a
common coding rate in an example two-user reduced Game 3. The min-max
bargaining solution z∗ is selected as in (39) where z∗1 and z∗2 are as in (40).
Dashed lines indicate the payoffs when no network coding is performed.

Corollary 2: The grim-trigger strategy in Definition 8 is a
subgame perfect equilibrium for Game 2 if we choose any

z ∈ Z1 ∩ ZN (36)

and a discount factor δ ≥ δmin for some δmin ∈ (0, 1].
We are now ready to make a formal definition as follows.
Definition 9 (Min-Max Bargaining): The min-max bargai-

ning solution is obtained by solving the following problem:

maximize
z∈Z1∩ZN

(P1(y∗(z), z)− P1(y∗(0), 0))

× (PN (y∗(z), z)− PN (y∗(0), 0)) .
(37)

Problems (24) and (37) have the same objective functions.
However, in (37), we restrict the feasible set to Z1 ∩ ZN .
Problem (37) is significantly easier to solve compared to
the Nash bargaining problem in (24). In fact, due to the
monotonicity of the objective function in (37) over set Z1∩ZN ,
the optimal solution of problem (37) is

z∗ = max
z∈Z1∩ZN

z. (38)

We can further show that

z∗ = min{z∗1 , z∗N}, (39)

where
z∗1 = max

z∈Z1

z, and z∗N = max
z∈ZN

z. (40)

Interestingly, z∗1 and z∗N are the optimal solutions for selfish
problems (22) and (23) as long as these problems are convex.
Otherwise, z∗1 and z∗N are simply the smallest local maximizers
of problems (22) and (23), respectively. That explains why we
refer to z∗ in (39) as the min-max bargaining solution.

If z∗1 < z∗N , e.g., as in the example in Fig. 2, then user N
prefers a lower network coding rate than user 1; however, due
to Theorem 2, user N is worse off by selecting vkN =zkN > z∗1
at any stage k ≥ 1. A similar statement is true for user 1. Thus,
users 1 and N can agree on rate z = z∗ distributively, after
they individually announce z∗1 and z∗N , respectively. Given z =
z∗, the users can then play the grim-trigger strategy.
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Fig. 3. An example on the impact of changing systems parameters on the
efficiency of the inter-session network coding game. Here the number of users
is N = 2. The linear utility parameter γ2 = 1, and γ1 varies from 0 to 1.

Fig. 3 illustrates the improvements in efficiency when the
min-max bargaining solution is used for a network with N = 2
users where the utility functions are linear with γ2 = 1 and γ1
varying from 0 to 1. We can see that if 0 < γ1 ≤ 1

4 , i.e., the
utility functions of user 1 and user 2 are very different, then
user 1 has no interest in participating in network coding and
the min-max bargaining solution is z∗ = 0. The worst-case
efficiency occurs when γ1 = 1

4 as expected based on Theorem
6. As γ1 increases, the two users have more motivation to agree
on a non-zero common coding rate leading to a significant
improvement in efficiency in the subgame perfect equilibrium
of Game 2 compared to the Nash equilibrium of Game 1.

VI. NUMERICAL RESULTS

In this section, we evaluate the min-max bargaining
scheme for various choices of parameters N , a, b1, bN , and
U1, . . . , UN . We assume that δ = 0.99. Numerical results for
100 random scenarios are shown in Fig. 4. For the results in
Fig. 4(a), we have N = 2 and the network includes only the
network coding users. For the results in Fig. 4(b), parameter
N is selected randomly between 5 to 50 and there are always
some some routing users in the network. In each scenario, the
link cost parameters a∈(0, 10), b1∈(0, 5), and b2∈(0, 5) are
selected randomly. The utility functions are α-fair [35]:

Un(x) = γn (1− αn)−1 x1−αn , n ∈ N , (41)

where αn∈ [0, 1) and γn ∈ (0, 100) are selected randomly. We
can verify that the utility functions in (41) satisfy Assumption
2. They include the linear case in (29) when αn = 0.

From Fig. 4(a), Game 2 has a higher efficiency than Game 1
in every scenario as predicted by Theorem 4. Furthermore, the
efficiency of Game 2 is always greater than or equal to 48%,
suggesting that PoA (Game 2,Problem 1) ≈ 48%. From this,
together with the upper bound result stated in Theorem 7, we
can draw an interesting conclusion: the worst-case efficiency
of repeated Game 2 occurs when even the bargaining process
cannot help to encourage users to perform network coding.
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Fig. 4. Efficiency at Nash equilibrium of Game 1 and subgame perfect
equilibrium of Game 2 for 100 random scenarios where network topology
is as in Fig. 1 and min-max bargaining solution is being used: (a) N = 2,
i.e., the network includes only network coding users. (b) The network also
includes routing users and N ∈ (5, 50).

From Fig. 4(b), Game 2 usually has a better efficiency
than Game 1. We can see that the efficiency of Game 2 is
always greater than or equal to 36%. Thus, the PoA of Game
2 achieves the upper bound in Theorem 9. In a few scenarios,
e.g., the 1st and the 60th scenarios, the efficiency of static
Game 1 is better than that of the repeated Game 2. In these
scenarios, the bargaining between network coding users leads
to a coding rate higher than the optimal coding rate of Problem
1, which hurts the utilities of routing users. This interesting
observation remains to be further investigated in the future.

VII. CONCLUSIONS AND FUTURE WORK

This work represents a first step towards understanding non-
cooperative inter-session network coding in a repeated game
theoretic framework. Our focus was on a simple butterfly
network with a pair of network coding users and an arbitrary
number of routing users. We showed that if the inter-session
network coding game is likely to be played repeatedly, then

it is possible for network coding users to achieve a mutually
desirable positive network coding rate via bargaining. This
is in sharp contrast to static inter-session network coding
games, where no network coding is performed at the Nash
equilibrium. We investigated the price-of-anarchy (PoA), i.e.,
the worst-case efficiency compared to an optimal and co-
operative network design. We showed that for all possible
bargaining schemes, the PoA of the repeated network coding
game is upper-bounded by 36% (with routing users) and 48%
(without routing users). These upper bounds can be achieved
by a simple min-max bargaining. This indicates a noticeable
improvement compared to the 20% and 22% PoA results for
static inter-session network coding for the same settings.

The results in this paper can be extended in several direc-
tions. First, our analysis can be applied to more general net-
work topologies such as those which are superposition of sev-
eral butterfly networks. Second, efficiency may be improved
by using user-specific pricing functions. Third, while we only
considered a simple coding approach such as XOR, more
general coding schemes may lead to different cooperation
behaviors. Finally, non-cooperative network coding models
may be studied as games with incomplete information.

APPENDIX

A. Proof of Theorem 2

Let ∆ = zk1 − zkN > 0. In this case, we have

P1

(
ȳk, z̄k, v̄k

)
= U1

(
yk1 + ∆ + vkN

)
−
(
vk1 −∆

)
p1
(
vk1 −∆

)
−
(
yk1 +∆+zk1−∆−(1−β)zkN

)
p

(
N∑
r=1

ykr +∆+zk1−∆

)
= U1

(
yk1 +∆+vkN

)
+ ∆ p1

(
vk1 −∆

)
− vk1 p1

(
vk1 −∆

)
−
(
yk1 + zk1 − (1− β)zkN

)
p

(
N∑
r=1

ykr + zk1

)
> U1

(
yk1 +vkN

)
− vk1 p1

(
vkN −∆

)
−
(
yk1 + zk1 − (1− β)zkN

)
p

(
N∑
r=1

ykr + zk1

)
= P1

(
yk, zk,vk

)
,

where the inequality is due to ∆p1
(
vkN−∆

)
> 0 and yk1 +

∆ + vkN > yk1 + vkN , and since U1(·) is increasing. Moreover,

PN
(
ȳk, z̄k, v̄k

)
= UN

(
ykN + zkN

)
− vkNpN (vkN )

−
(
ykN + βzkN

)
p

(
N∑
r=1

ykr + ∆ + zk1 −∆

)
= PN

(
yk, zk,vk

)
.

Finally, for each routing user n = 2, . . . , N − 1, we have

Pn
(
ȳk, z̄k, v̄k

)
= Un(ykn)− ykn p

(
N∑
r=1

ykr +∆+z1−∆

)
= PN

(
yk, zk,vk

)
.
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Therefore, user 1 is better off by switching to new rates
(ȳk1 , v̄

k
1 , z̄

k
1 ), without changing other users payoffs. �

B. Proof of Theorem 3

First, we prove that the grim-trigger strategy is a subgame
perfect equilibrium for user 1. Assume that all users always
cooperate and play Step 1 in Definition 8. In that case, at
each stage k ≥ 1 of Game 2, if user 1 follows the grim-
trigger strategy and always sets its rates according to Step 1,
it expects a long-term payoff

∞∑
t=k

(δ)t−k P1(y∗(z), z) =
P1(y∗(z), z)

1− δ
. (42)

Next, assume that user 1 can reach the best payoff Γ1 ≥
P1(y∗(z), z) at the current stage of Game 2 if it deviates from
Step 1. Then, user 1 expects long-term payoff

P1(y∗(z), z) +

∞∑
t=k+1

(δ)t−k P1(y∗(0), 0)

= Γ1 +

(
δ

1− δ

)
P1(y∗(0), 0).

(43)

Comparing (42) and (43), it is best for user 1 to cooperate if
and only if there exists discount factors δ ∈ (0, 1] such that

P1(y∗(z), z)

1− δ
≥ Γ1 +

(
δ

1− δ

)
P1(y∗(0), 0). (44)

After reordering the terms, it is required that

Γ1 − P1(y∗(z), z)

Γ1 − P1(y∗(0), 0)
≤ δ ≤ 1. (45)

Clearly, the inequality (45) holds for some δ ∈ (0, 1] if and
only if (18) holds. Next, assume that user N deviates from
coding rate z. In that case, user N will no longer participate
in network coding due to the grim-trigger strategy. Thus, it is
not in user 1’s interest to participate in network coding either.
The proof for user N is similar. The grim-trigger strategy is
the best action for user N in each stage k ≥ 1 if and only if

ΓN − PN (y∗(z), z)

ΓN − PN (y∗(0), 0)
≤ δ ≤ 1, (46)

where ΓN ≥ PN (y∗(z), z) is the best payoff user N can
achieve in the current stage of Game 2 if it deviates from the
rates in Step 1 of the grim-trigger strategy. Finally, the proof
for routing users n = 2, . . . , N − 1 is evident as the routing
users simply play Nash equilibrium the given coding rate set
by the network coding users. In summary, for the grim-trigger
strategy to form a subgame perfect equilibrium, the discount
factor δ needs to satisfy both (45) and (46) and we have

δmin = max

{
Γ1 − P1(y∗(z), z)

Γ1 − P1(y∗(0), 0)
,

ΓN − PN (y∗(z), z)

ΓN − PN (y∗(0), 0)

}
.

This concludes the proof. �

C. Proof of Theorem 4

From Theorem 3, and since N = 2, it is required for any
bargaining solution z ≥ 0 that

U1(y∗1(z) + z)− a(y∗1(z) + βz)(y∗1(z) + y∗2(z) + z)− b1z2

≥ U1(y∗1(0))− ay∗1(0)(y∗1(0) + y∗2(0)),
(47)

and

U2(y∗2(z) + z)− a(y∗2(z) + βz)(y∗1(z) + y∗2(z) + z)− b2z2

≥ U2(y∗2(0))− ay∗2(0)(y∗1(0) + y∗2(0)).
(48)

Summing up both sides in (47) and (48) and since β = 1
2 ,

U1(y∗1(z) + z) + U2(y∗2(z) + z)

− a(y∗1(z) + y∗2(z) + z)2 − (b1 + b2)z2

≥ U1(y∗1(0)) + U2(y∗2(0))− a(y∗1(0) + y∗2(0))2.

(49)

For the rest of the proof, we consider two cases:
Case I) Assume that we have

y∗1(0) ≤ y∗1(z) + z (50)

and
y∗2(0) ≤ y∗2(z) + z. (51)

In this case, since the utility functions are increasing, due to
Assumption 2, from (50) and (51), we further have

U1(y∗1(0)) ≤ U1(y∗1(z) + z), (52)

U2(y∗2(0)) ≤ U2(y∗2(z) + z). (53)

By adding the non-negative term U1(y∗1(0)) + U2(y∗2(0)) to
both sides of the inequality in (49), we will have

2
(
U1(y∗1(0)) + U2(y∗2(0))− a

2
(y∗1(0) + y∗2(0))2

)
≤ U1(y∗1(z) + z) + U2(y∗2(z) + z)

− a

2
(y∗1(z) + y∗2(z) + z)2 − b1

2
z2 +

b2
2
z2

+ U1(y∗1(0))+U2(y∗2(0))− a
2

(y∗1(z)+y∗2(z)+z)2

− b1
2
z2 +

b2
2
z2

≤ 2

(
U1(y∗1(z) + z) + U2(y∗2(z) + z)− b1

2
z2

−b2
2
z2 − a

2
(y∗1(z) + y∗2(z) + z)2

)
,

(54)

where the last inequality is due to (52) and (53). After dividing
both sides in (54) by 2, the left hand side of (54) becomes
the network aggregate surplus at Nash equilibrium of Game 1
while the right hand side is the network aggregate surplus at
the subgame perfect equilibrium of Game 2.

Case II) Assume that we have

y∗1(0) > y∗1(z) + z (55)

or
y∗2(0) > y∗2(z) + z. (56)
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Without loss of generality, we only consider the case where
(55) holds. We first recall that y∗1(z) is obtained as the optimal
solution of the following problem

max
y1≥0

U1(y1 + z)− a(y1 + βz)(y1 + y∗2(z) + z)− b1z2. (57)

Thus, due to the Karush-Kuhn-Tucker (KKT) conditions,

U ′1(y∗1(z) + z) ≤ a(y∗1(z) + y∗2(z) + z) +a(y∗1(z) +βz) (58)

and
U ′1(y∗1(0)) = a(y∗1(0) + y∗2(0)) + ay∗1(0). (59)

We notice that the inequality (58) holds as equality, only if
y∗1(z) > 0. On the other hand, the equality in (59) is due
to y∗1(0) > 0, which directly results from (55), z ≥ 0,
and y∗1(z) ≥ 0. Next, we notice that due to Assumption 2,
the utility functions are concave, i.e., their derivatives are
decreasing functions. From this, together with (55), we have

U ′1(y∗1(z) + z) > U ′1(y∗1(0)). (60)

Replacing (60) in (58) and (59), we further have

a(y∗1(z) + y∗2(z) + z) + a(y∗1(z) + βz)

> a(y∗1(0) + y∗2(0)) + ay∗1(0).
(61)

From (55), and since β = 1
2 , we have y∗1(z) + βz ≤ y∗1(0).

Thus, (61) holds only if

y∗1(z) + y∗2(z) + z > y∗1(0) + y∗2(0). (62)

Since b1 > 0 and b2 > 0, the above inequality results in(
a

2
(y∗1(z) + y∗2(z) + z)2 +

b1
2
z2

+
b2
2
z2 − a

2
(y∗1(0) + y∗2(0))2

)
≥ 0,

(63)

Finally, by replacing (63) in (49), we have

(
U1(y∗1(0)) + U2(y∗2(0))− a

2
(y∗1(0) + y∗2(0))2

)
≤ 2

(
U1(y∗1(z) + z) + U2(y∗2(z) + z)− b1

2
z2

−b2
2
z2 − a

2
(y∗1(z) + y∗2(z) + z)2

)
.

(64)

This concludes the proof. �

D. Proof of Proposition 1

Let us consider two lemmas that will help us with the proof.
Lemma 1: Given an arbitrary z ≥ 0, for each routing user

n = 2, . . . , N − 1, we can show that
(a) If y∗n(z) > 0, then the first derivative

U ′n(y∗n(z)) = a (q∗(z) + y∗1(z) + y∗N (z) + z) +ay∗n(z). (65)

(b) If y∗n(z) = 0, then

U ′n(y∗n(z)) ≤ a (q∗(z) + y∗1(z) + y∗N (z) + z) . (66)

Lemma 2: Given an arbitrary z ≥ 0, we can show that

(a) If y∗1(z) > 0 and y∗N (z) > 0, then

U ′1(y∗1(z) + z)

= a (q∗(z) + y∗1(z) + y∗N (z) + (1 + β)z) + ay∗1(z)
(67)

U ′N (y∗N (z) + z)

= a (q∗(z) + y∗1(z) + y∗N (z) + (1 + β)z) + ay∗N (z).
(68)

(b) If y∗1(z) > 0 and y∗N (z) = 0, then4

U ′1(y∗1(z) + z) = a (q∗(z) + y∗1(z) + (1 + β)z) + ay∗1(z),
U ′N (z) ≤ a (q∗(z) + y∗1(z) + (1 + β)z) .

(69)
(c) If y∗1(z) = 0 and y∗N (z) = 0, then

U ′1(z) ≤ a (q∗(z) + (1 + β)z) ,
U ′N (z) ≤ a (q∗(z) + (1 + β)z) .

(70)

Replacing (29) and (30) in Lemma 2, we can consider three
cases separately. Here, we notice that q∗(z) = 0.

Case I) If y∗1(z) > 0 and y∗2(z) > 0, then

γ1 = a (y∗1(z)+y∗2(z)+(1+β)z) + ay∗1(z), (71)
γ2 = a (y∗1(z)+y∗2(z)+(1+β)z) + ay∗2(z). (72)

From (72), we have

y∗1(z) =
γ2 − a(y∗2(z) + (1 + β)z)

2a
. (73)

Replacing (73) in (71), we have

y∗1(z) =
2γ1 − γ2 − a(1 + β)z

3a
, (74)

y∗2(z) =
2γ2 − γ1 − a(1 + β)z

3a
. (75)

From (74) and knowing that y∗1(z) > 0, we have

2γ2 − γ1 − a(1 + β)z > 0 ⇒ z <
2γ2 − γ1
a(1 + β)

. (76)

Similarly, from (75) and knowing that y∗2(z) > 0, we have

2γ1 − γ2 − a(1 + β)z > 0 ⇒ z <
2γ1 − γ2
a(1 + β)

. (77)

Since γ1 ≥ γ2, inequalities (76) and (77) reduce to

0 ≤ z < 2γ2 − γ1
a(1 + β)

. (78)

Thus, the data rates in (74) and (75) hold only if (78) holds.

Case II) If y∗1(z) > 0 and y∗2(z) = 0, then

γ1 = a (y∗1(z)+(1+β)z) + ay∗1(z), (79)
γ2 ≤ a (y∗1(z)+(1+β)z) . (80)

From (79) and after reordering the terms, we have

y∗1(z) =
γ1 − a(1 + β)z

2a
. (81)

Replacing (81) in (80), we have

2γ2 ≤ γ1 + a(1 + β)z ⇒ z ≥ 2γ2 − γ1
a(1 + β)

. (82)

4The case when y∗1(z) > 0 and y∗N (z) = 0 can be modeled similarly.
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Moreover, from (81) and knowing that y∗1(z) > 0, we have

γ1 > a(1 + β)z ⇒ z <
γ1

a(1 + β)
. (83)

Case III) If y∗1(z) = 0 and y∗2(z) = 0, then

γ1 ≤ a(1 + β)z, γ2 ≤ a(1 + β)z. (84)

Since γ1 ≥ γ2, the above leads to z ≥ γ1/(a(1 + β)). �

E. Proof of Theorem 6

Without loss of generality, we assume that γ1 ≥ γ2. In that
case, given z ≥ 0, the data rates y∗1(z) and y∗2(z) are obtained
from Proposition 1. We consider three cases separately.

Case I) If γ2 ≤ γ1 < 2γ2 and (29) and (30) hold, then

P2(y∗(0), 0) =

γ2

(
2γ2 − γ1

3a

)
− a

(
2γ2 − γ1

3a

)(
γ1 + γ2

3a

)
.

(85)

On the other hand, if 0 ≤ z < 2γ2−γ1
a(1+β) and β = 1

2 , then

P2(y∗(z), z) =

γ2

(
2γ2 − γ1

3a
+
z

2

)
− a

(
2γ2 − γ1

3a

)(
γ1 + γ2

3a

)
.

(86)

From (85) and (86), we have

P2(y∗(z), z)−P2(y∗(0), 0) =
γ2z

2
> 0, ∀z∈

(
0,

2γ2−γ1
a(1+β)

)
.

Therefore, (26) does not hold. A similar statement is true for
(25). Thus, Condition 1 does not hold if γ2 ≤ γ1 < 2γ2.

Case II) If 2γ2 ≤ γ1 ≤ 4γ2 and (29) and (30) hold, then

P2(y∗(0), 0) = 0. (87)

On the other hand, if 0 ≤ z < γ1
a(1+β) and β = 1

2 , then

P2(y∗(z), z) = γ2z −
az

2

(γ1
2a

+
z

4

)
. (88)

Furthermore, we have

lim
z→0

d P2(y∗(z), z)

d z
= lim
z→0

γ2 −
γ1
4
− az

4
= γ2 −

γ1
4
> 0.

Therefore, (26) does not hold. A similar statement is true for
(25). Thus, Condition 1 does not hold if 2γ2 ≤ γ1 < 4γ2.

Case III) If 4γ2 ≤ γ1 and (29) and (30) hold, then

P2(y∗(0), 0) = 0. (89)

If 0 ≤ z < γ1
a(1+β) and β = 1

2 , then (88) holds and we have

P2(y∗(z), z)− P2(y∗(0), 0)

= z
(
γ2 − γ1

4

)
− az2

4 < 0,
∀z ∈

(
0, γ1

a(1+β)

)
, (90)

where the inequality is due to 4γ2 ≤ γ1. On the other hand,
if γ1

a(1+β) ≤ z and β = 1
2 , then

P2(y∗(z), z) = γ2z −
az2

2
. (91)

Therefore,

P2(y∗(z), z)− P2(y∗(0), 0)
= z

(
γ2− az

2

)
< 0,

∀z ≥ γ1
a(1+β) , (92)

where the inequality is due to

γ2 −
az

2
< γ2 −

a

2

(
γ1

a(1 + 1
2 )

)
= γ2 −

γ1
3
< 0. (93)

From (90) and (93), inequality (26) holds if and only if

0 < γ2 ≤
γ1
4
. (94)

In that case, from Corollary 1, we have z = 0, y∗1(0) = γ1
2a ,

and y∗2(0) = 0. Thus,

S (y∗(z=0), z=0) = γ1

(γ1
2a

)
− a

2

(γ1
2a

)2
=

3γ1
2

8a
(95)

On the other hand, from [6, Theorem 10], we have

S(yS , zS ,vS)=
(γ1 + γ2)2

2a
. (96)

Therefore, the worst-case efficiency of Game 2 is obtained by
solving the following optimization problem

minimize
γ1,γ2,a

3γ1
2

8a
(γ1+γ2)2

2a

subject to 0 < γ2 ≤
γ1
4
.

(97)

The objective function in (97) is decreasing in γ2. Thus, the
minimum occurs when γ2 = γ1

4 . Thus, the efficiency becomes

3γ1
2

8a
(γ1+

γ1
4 )2

2a

=
3
8
25
32

=
12

25
. (98)

We can see that the worst-case efficiency does not depend on
the value of shared-link cost parameter a. It only depends on
the relative value of utility parameters γ1 and γ2. �

F. Proof of Theorem 8

Without loss of generality, we assume that γ1 ≥ γN .
Furthermore, we may have either

γ1 + γN < γmax (99)

or
γ1 + γN ≥ γmax, (100)

where γmax = maxn∈N γn. From [6, Theorem 10(c)], if (99)
holds, then no network coding is desired for efficient resource
allocation. Thus, we only focus on the case when (100) holds.
We have

S(yS , zS ,vS)=
(γ1 + γN )2

2a
. (101)

Moreover, from Lemma 2, we can verify that we have

PN (y∗(z), z) < PN (y∗(0), 0), ∀z > 0, (102)

if and only if

0 < γN ≤
γ1
4

+
aq∗(0)

4
. (103)

We notice that if q∗(0) = 0 then condition (103) reduces to
(94) and the results will be as in Theorem 6. Therefore, we
only focus on the case when q∗(z) > 0. Next, we can verify
that the worst-case efficiency occurs when

N →∞, γ2 = . . . = γN−1. (104)
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The proof is similar to that of [6, Theorem 11(b)] and [26,
Theorem 3]. On the other hand, from Lemma 1, we have

γ2 = a(q∗(z) + y∗1(z) + y∗N (z) + z) + ay∗2(z),

... (105)
γN−1 = a(q∗(z) + y∗1(z) + y∗N (z) + z) + ay∗N−1(z).

Replacing (104) in (105), we have

γ2 = a(q∗(z) + y∗1(z) + y∗N (z) + z). (106)

We notice that if (103) holds, then z = 0 and (106) becomes

γ2 = a(q∗(0) + y∗1(0) + y∗N (0)). (107)

Next, we consider three cases separately:

Case I) If y∗1(0) > 0 and y∗N (0) > 0, then

γ1 = a (q∗(0) + y∗1(0)+y∗N (0)) + ay∗1(0), (108)
γN = a (q∗(0) + y∗1(0)+y∗N (0)) + ay∗N (0). (109)

From Proposition 2, we have

y∗N (0) =
2γ2 − γ1 − aq∗(0)

3a
. (110)

However, replacing (103) in (110), we have

y∗N (0) ≤ 0. (111)

This contradicts the assumption that y∗N (0) > 0. Thus, (102)
does not occur. Thus, Condition 2 does not hold in this case.

Case II) If y∗1(0) > 0 and y∗N (0) = 0, then

γ1 = a (q∗(0) + y∗1(0)) + ay∗1(0),
γN ≤ a (q∗(0) + y∗1(0)) .

(112)

From Proposition 2, we have

y∗1(0) =
γ1 − aq∗(0)

2a
. (113)

On the other hand, from (107) and the fact that y∗N (0) = 0,

aq∗(0) = γ2 − ay∗1(0). (114)

By replacing (114) in (113) and after reordering the terms,

y∗1(0) =
γ1 − γ2

a
. (115)

From (114) and (115), we can further show that

aq∗(0) = 2γ2 − γ1. (116)

Replacing (116) in (103), the inequalities in (102) holds if and
only if we have

0 < γN ≤
γ1
4

+
2γ2 − γ1

4
=
γ2
2
. (117)

Therefore, in this case, we have

S(y∗(z=0), z=0) = γ1

(
γ1 − γ2

a

)
+ γN × 0

+ γ2

(
2γ2 − γ1

a

)
− a

2

(
γ1 − γ2

a
+

2γ2 − γ1
a

)2

=
γ21 − 2γ1γ2 + 3

2γ
2
2

a
.

(118)

From (101) and (118), the worst-case efficiency of Game 2 is
obtained by solving the following optimization problem

minimize
γ1,γ2,γN

γ21 − 2γ1γ2 + 3
2γ

2
2

0.5 (γ1 + γN )
2

subject to γN ≤
γ2
2
,

γ1 + γN ≥ γmax,

γN ≤ γ1,
0 < γ1, γ2, γN ≤ γmax.

(119)

We notice that from the first, third, and fourth inequality
constraints in (119), we have

γ2 ≤ γmax ≤ γ1 + γN ≤ 2γ1 ⇒ γ1 ≥
γ2
2
. (120)

Thus, we can remove constraints γN ≤ γ1 and γN ≤ γmax.
The optimization problem (119) reduces to

minimize
γ1,γ2,γN

γ21 − 2γ1γ2 + 3
2γ

2
2

0.5 (γ1 + γN )
2

subject to γN ≤
γ2
2
,

γ1 + γN ≥ γmax,

0 < γ1, γ2 ≤ γmax.

(121)

Next, we notice that the objective function in problem (121)
is decreasing in γN . Thus, the worst-case efficiency occurs at
upper bound of γN , i.e., when we have

γN =
γ2
2
. (122)

Therefore, problem (121) further reduces to

minimize
γ1,γ2

γ21 − 2γ1γ2 + 3
2γ

2
2

0.5
(
γ1 + γ2

2

)2
subject to γ1 +

γ2
2
≥ γmax,

0 < γ1, γ2 ≤ γmax.

(123)

Problem (123) is not a convex minimization problem with
respect to variables γ1 and γ2. However, we can still solve
problem (123) as follows. We first assume that γ2 is fixed. By
solving the KKT conditions in problem (123) with respect to
variable γ1, we can identify three KKT points:

γ1 = γmax, (124)
γ1 = γmax − γ2

2 , (125)
γ1 = 4

3γ2. (126)

The global minimizer choice of γ1 is among the above three
KKT conditions. We start by replacing (124) in problem (123).
After reordering the terms, problem (123) becomes

minimize
γ2

γ2max − 2γmaxγ2 + 3
2γ

2
2

0.5
(
γmax + γ2

2

)2
subject to 0 < γ2 ≤ γmax.

(127)

Problem (127) is convex with respect to γ2. By taking deriva-
tives, we can show that the minimum occurs when we select

γ2 =
3

4
γmax. (128)
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Replacing (128) in the objective function in (127), the worst-
case efficiency in this case becomes

2 γ2max

(
1− 2× 3

4 + 3
2 ×

(
3
4

)2)
γ2max

(
1 + 3

8

)2 =
4

11
. (129)

Next, we replace (125) in problem (123). It becomes

minimize
γ2

γ2max − 3γmaxγ2 + 11
4 γ

2
2

0.5γ2max

subject to 0 < γ2 ≤ γmax.

(130)

Problem (127) is convex with respect to γ2. By taking deriva-
tives, we can show that the minimum occurs when we select

γ2 =
6

11
γmax. (131)

Replacing (131) in the objective function in (130), the worst-
case efficiency in this case becomes

2γ2max

(
1− 3× 6

11 + 11
4 ×

(
6
11

)2)
γ2max

=
4

11
. (132)

Interestingly, if we replace (131) in (125), we have

γ1 = γmax −
6
11γmax

2
=

8

11
γmax ⇒ γ2 =

3

4
γ1. (133)

Finally, we replace (126) in problem (123). In this case, (128)
holds and the worst-case efficiency is obtained as in (129).

Case III) If y∗1(0) = 0 and y∗N (0) = 0, then

γN ≤ γ1 ≤ aq∗(0). (134)

Furthermore, from (107), we have γ2 = aq∗(0). Thus, in this
case, γN ≤ γ1 ≤ γ2. By following similar steps as in Case II,
we can verify that the worst-case efficiency in this case is 4

9 .
Combining the results in Cases I, II, and III, the worst-case

efficiency when Condition 1 and Condition 2 hold becomes

min

{
4

11
,

4

9

}
=

4

11
, (135)

which occurs when (33) holds. �
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