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Abstract—This paper analyzes and compares different in-
centive mechanisms for a client to motivate the collaboration
of smartphone users on both data acquisition and distributed
computing applications.

Data acquisition from a large number of users is essential
to build a rich database and support emerging location-based
services. We propose a reward-based collaboration mechanism,
where the client announces a total reward to be shared among
collaborators, and the collaboration is successful if there are
enough users willing to collaborate. We show that if the client
knows the users’ collaboration costs, then he can choose to
involve only users with the lowest costs by offering a small total
reward. However, if the client does not know users’ private cost
information, then he needs to offer a larger total reward to attract
enough collaborators. Users will benefit from knowing their costs
before the data acquisition.

Distributed computing aims to solve computational intensive
problems in a distributed and inexpensive fashion. We study
how the client can design an optimal contract by specifying
different task-reward combinations for different user types.
Under complete information, we show that the client will involve a
user type as long as the client’s preference for that type outweighs
the correspoinding cost. All collaborators achieve a zero payoff
in this case. But if the client does not know users’ private cost
information, he will conservatively target at a smaller group of
efficient users with small costs. He has to give most benefits to
the collaborators, and a collaborator’s payoff increases in his
computing efficiency.

I. INTRODUCTION

Smartphones are becoming the mainstream in mobile

phones. According to a survey by ComScore in 2010, over

45.5 million people owned smartphones out of 234 million

total mobile phone subscribers in the United States [1]. In

March 2010, Berg Insight reported that global smartphone

shipments increased 74% from 2009 to 2010 [2].

Given millions of smartphones sold annually, some recent

phone applications start to utilize the power of smartphone

users’ collaborations [3], [4]. In such an application, there is a

client (e.g., Apple or Google in the following examples) who

wants to implement some application or service based on user
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collaborations. We can roughly categorize these applications

in two types as follows.

In the first type of data acquisition application, a client

wants to acquire enough data from smartphone users to build

up a database. According to [4], Apple’s iPhone and Google’s

Android smartphones regularly transmit their owners’ location

data (including GPS coordinates) back to Apple and Google,

respectively. For example, an Android phone collects its loca-

tion data every few seconds and transmits the data to Google

at least several times an hour. The phone also transmits back

the name, location, and signal strength of any nearby Wi-Fi

networks. After collecting enough location data from users,

Google can successfully build a massive database capable of

providing location-based services. One service can be live map

of auto traffics, where the dynamics of users’ location data on

a highway indicate whether there is a traffic jam. Another

service can be constructing a large-scale public Wi-Fi map.

According to [5], the global location-based service market

is growing strongly, and its revenue is expected to increase

from US$2.8 billions to US$10.3 billions between 2010 and

2015. In order to perform the above data acquisition, a lot of

efforts need to be spent to get users’ consent and protect users’

privacy (e.g., [6]–[9]). When a user collaborates in this kind

of applications, he will incur a cost such as loss of privacy.

In the second type of distributed computing application,

a client wants to solve complex engineering or commer-

cial problems inexpensively using distributed computation

power. Smartphones now have powerful and power-efficient

processors (e.g., Dual-core A5 chip of Apple iPhone 4S),

outstanding battery life, abundant memory, and open operating

systems (e.g., Google Android) [10] that make them suitable

for complex processing tasks. Since millions of smartphones

remain unused most of the time, a client might want to solicit

smartphone collaborations in distributed computing (e.g., [11],

[12]). In this case, a user’s collaboration cost may be due to

loss of energy and reduction of physical storage.

In this paper, we will design incentive mechanism for smart-

phone collaborations in both data acquisition and distributed

computing applications. Then we can compare the similarity

and difference in mechanism design for both applications.

For each type of applications, we will consider different

information scenarios, depending on what the client and users



know. In particular, the client may or may not know each

smartphone user’s characteristics such as collaboration costs

and collaboration efficiencies.

The two types of applications have different requirements

and lead to different models. In data acquisition applications,

we consider a threshold-based revenue model, where a client

can earn a fixed positive revenue only if he can involve

enough (larger than a threshold) smartphone users as collab-

orators, such that he can build a large enough database to

support the application. Since data acquisition only requires

simple periodic data reporting, we can assume that users are

homogeneous in contribution and efficiency. In distributed

computing applications, however, we consider a model where

the client’s revenue increases in users’ efforts. Also, users are

heterogeneous in computing efficiencies and should be treated

differently. For example, the most efficient users should be

highly rewarded to encourage them to undertake large tasks.

Our key results and contributions are as follows:

• New reward-based collaboration mechanism for data
acquisition: In Section II, we model the interactions

between the client and users as a Stackelberg game. The

client first announces the total reward to be shared among

collaborators and the minimum number of collaborators

needed. Each user needs to take other users’ decisions

into account in estimating the shared reward and the

chance of collaboration success.

• Performance of reward-based mechanism: Under com-

plete information, the client will only involve users with

the lowest costs by offering a small total reward. The

client can achieve a similarly good performance under

symmetrically incomplete information, when both the

client and users do not know users’ cost information.

But if users know their costs while the client does

not (asymmetrically incomplete information), the client

needs to offer a large total reward to attract enough

collaborators. Overall, users benefit from holding private

information.

• New contract-based collaboration mechanism for dis-
tributed computing: In Section III, we use contract theory

to study how a client efficiently decides different task-

reward combinations for heterogeneous users.

• Performance of contract-based mechanism: Under com-

plete information, the client involves a user type as long

as the client’s preference of the type is larger than the

user cost. All collaborators get a zero payoff. But if users

have private information and can hold from the client,

the client will conservatively target at a smaller group

of efficient users with small costs. He has to give most

benefits to the collaborators and a collaborator’s payoff

increases in the computing efficiency.

A. Related Work

Our first collaboration model on data acquisition is closely

related to the literature on location-based services (LBS) [13].

In LBS, a customer needs to report his current location to the

database server in order to receive his desired service. Prior

work are focusing on how to manage data and how customers

can safely communicate with the database server (e.g., [8], [9],

[14]), especially when the massive database has already been

built up. Other work considered the technical issues of data

collection from users [14]. Our paper focuses on the client’s

problem of incentive mechanism design for attracting enough

users (may or may not be LBS customers later) to provide

location data, so that the client can build a LBS later on.

Our second collaboration model is relevant to mobile grid

computing, which integrates mobile wireless devices into grid

computing (e.g., [12], [15]–[17]). The main focus of mobile

grid computing literature is on the technical issues of resource

management or load balancing (e.g., [16], [17]). Only few

results have considered (mobile) users’ incentives issues in

joining in collaboration [12], [18]–[20]. Kwok et al. in [19]

evaluate the impact of selfish behaviors of individual users in a

Grid. Subrata et al. in [20] present a Nash bargaining solution

for load balancing among multiple clients. Ghosh et al. in

[12] and Sim in [18] use a two-player alternating bargaining

model to study collaboration between clients and users. The

novelty of our model is that a client interacts with all users

simultaneously to distribute computing work, and users are

heterogeneous in their computing efficiencies and costs. We

propose a new contract-based mechanism that maximizes the

client’s profit.1

It should also be noted that our model follows a principal-

agent structure in different information scenarios, and is quite

different from the P2P structure. Note that in a P2P network,

each peer interacts with other peers to obtain local storage and

uploading services [22], and the incentive mechanisms in P2P

network cannot apply to our principal-agent model.

II. COLLABORATION ON DATA ACQUISITION

A. System Model of Data Acquisition

In this application, the client is interested in building up a

database by collecting information from enough smartphone

users. We consider a set N = {1, · · · , N} of smartphones,

and the total number N is publicly known.2 User i ∈ N has a

collaboration cost Ci > 0.3 We assume that the collaboration

costs are independent and identically distributed, with a mean

μ and a cumulative probability distribution function F (·).
We consider a threshold revenue model for the client. If

the client attracts at least n0 users as collaborators, he will

successfully build the database and receive a revenue of V .

Otherwise, the client does not receive any revenue.

The client interacts with the users through a two-stage

process. In Stage I, the client announces (R,n0), where R
is the total reward to all users and n0 is the threshold number

of required collaborators. In Stage II, each user chooses to be

a collaborator or not.

1The design of contract-based mechanism here is similar to that in our
previous work [21] in methodology, but that work focuses on a different
problem on cooperative spectrum sharing and the derived mechanisms are
significantly different.

2We assume that all N users are active. The client (e.g., Apple) can learn
the number of active users (e.g., iPhones) by checking users’ usage history,
or regularly send control messages to each user for status confirmation.

3A user’s collaboration cost is determined by his privacy loss. The cost
can be property loss due to disclosure of bank account information in data
reporting to the client or frequent annoyance from unwanted advertising.



Assume that there are n users willing to serve as collabo-

rators in Stage II. A collaborator i’s payoff is[
R

n
− Ci

]
1{n≥n0}. (1)

where 1{A} is the indicator function (equals 1 when event A
is true). That is, if the collaboration is successful, user i pays

his collaboration cost Ci, and gets the reward R/n (equally

spitted among n collaborators). In this case, n users will only

collaborate if the client notifies them that n ≥ n0 and the

collaboration will be successful. This means that no users will

pay collaboration cost if the collaboration is not successful.

Here, we assume that the client will truthfully inform the

collaborators about the value of n.4

In this model, the client obtains a profit of

(V −R)1{n≥n0}.
The collaboration game is a two-stage Stackelberg game

[24]. The way to analyze Stackelberg game is backward

induction. We will first analyze Stage II, where the users play

a game among themselves based on the value of the reward

R and the threshold n0.5 Users reach a Nash equilibrium
(NE) in this stage, if no user can improve his payoff by

changing his strategy (collaborate or not) unilaterally. The

equilibrium in Stage II leads to a collaboration success prob-

ability P (n ≥ n0;R). As we will see, there may be multiple

Nash equilibria in Stage II. Then we study Stage I, where the

client chooses the value of R to maximize his expected profit

(V −R)P (n ≥ n0;R). These two-step analysis enables us to

obtain an equilibrium of the whole collaboration game.

Next we will analyze the Stackelberg game, and study how

the client’s and the users’ information about the collaboration

costs will affect the outcome. Most of the proofs are quite
lengthy and are given in our online technical report [23].

B. Collaboration under Complete Information

We first consider the complete information scenario, where

the client and all users know the cost Ci of every user i ∈ N .6

This is possible when the client and users have extensive prior

collaboration experiences. The equilibrium of the collaboration

game is as follows.

Theorem 1 (Collaboration under Complete Information):
Let C0 be the n0-th smallest collaboration cost among all N
users. The collaboration game admits the following unique

pure strategy equilibrium.

• If V < n0C0, then the client does not initiate the

collaboration in Stage I (i.e., setting R∗ = 0). No user

will become collaborator in Stage II.

• If V ≥ n0C0, the client offers a reward R∗ = n0C0

in Stage I. In Stage II, every user i with Ci ≤ C0

collaborates and obtains a nonnegative payoff C0 − Ci,

and the remaining N−n0 users decline to collaborate and

get a zero payoff. The profit of the client is V − n0C0.

4Here we focus on the incentive issue of users rather than the one of the
client. In [23], we further consider the client’s incentive issue and propose a
solution for it.

5We consider that each user will join the collaboration as long as his payoff
is nonnegative.

6We assume that no two users have the exactly same cost, as there are
infinite possible values for the cost.

Under complete information, we can show that users will

not benefit from using a mixed-strategy.

C. Collaboration under Symmetrically Incomplete Informa-
tion

Now we consider the symmetrically incomplete information

scenario, where both the client and the users only know

the cumulative probability distribution function F (·) of the

collaboration costs.7 A user i even does not know the value

of his own cost Ci.
8 In this case, we can view all users as

homogeneous.
1) Analysis of Stage II: It turns out that there are multiple

equilibria of the collaboration game in Stage II as follows.

Theorem 2: (Stage II under Symmetrically Incomplete In-
formation): Stage II admits the following Nash equilibria:

• (No Collaboration): If R < n0μ, no user will collaborate

at any equilibrium in Stage II.

• (Pure strategy NE): If n0μ ≤ R < Nμ, n∗ = �R
μ � users

choose to collaborate and the remaining users decline. If

R ≥ Nμ, all N users will collaborate.

• (Mixed strategy NE): If n0μ < R < Nμ, every user

collaborates with a probability p∗, which is the unique

solution to

Em

([
R

m+ 1
− μ

]
1{m+1≥n0}

)
= 0, (2)

where the expectation E is taken over the random variable

m which follows a binomial distribution B(N − 1, p).

We note that the pure and mixed strategy equilibria in

Theorem 2 share a common parameter range, n0μ < R < Nμ.

In the pure strategy NE, a subset of n∗ users is picked up

among

(
N
n∗

)
possible subsets. Thus there exist multiple

pure NEs in this case.9

Next we show how the mixed strategy NE p∗ is derived. As

all users have the same statistical information, we will focus

on the symmetric mixed Nash equilibrium. Assume that all

users collaborate with a probability p. If user i collaborates,

his expected payoff is

u(R, p) := Em

([
R

m+ 1
− μ

]
1{m+1≥n0}

)
,

where m is the number of users (other than i) who collaborate

and the expectation is taken over m. Note that m follows a

binomial distribution B(N − 1, p), and is independent of user

i’s decision.

Given all the other N − 1 users collaborate with the

equilibrium probability p∗, user i’s payoffs by choosing to

collaborate or not are the same. Thus p∗ should satisfy

u(R, p∗) = 0,

7The client can estimate F (·) by learning from his collaboration history
or making a customer survey. A user can estimate F (·) by checking his or
other users’ collaboration experiences. There are many public sources (e.g.,
the client’s or some third party’s market or customer surveys) that help a
user’s cost estimation [5], [14].

8It is sometimes difficult for a user to know his precise loss of privacy
before an actual security threat happens to him. Users may face many possible
security threats by losing sensitive information, e.g., direct property loss or
advertising harassment.

9In our online technical report [23], we provide further discussions on how
to select among multiple pure NEs.



and is a function of R. Thus we can rewrite p∗ as p∗(R). One

can show that there exists a mixed strategy Nash equilibrium

p∗(R) ∈ (0, 1) as long as n0μ < R < Nμ. Note that R ≤ n0μ
leads to p∗(R) = 0, which is not a mixed strategy. Also,

R ≥ Nμ leads to p∗(R) = 1, which is not a mixed strategy

either.
2) Analysis of Stage I: First we consider the case where

users use the mixed strategy in Theorem 2 and collaborate

with probability p∗(R). The client’s expected profit is then

f(R) := En

(
[V −R]1{n≥n0}

)
,

where the expectation is taken over n which follows a binomial

distribution (N, p∗(R)). One can show that f(R) has a unique

maximum f(R∗), which is positive when V > n0μ. However,

under n0μ < R < Nμ there is always a chance that there are

less than n0 users choosing to collaborate under the mixed

strategy. Thus the client may want to avoid this. Theorem 2

shows that by choosing R = n0μ, the client can guarantee n0

collaborators with a pure strategy Nash equilibrium in Stage

II. This leads to the following result.

Theorem 3: (Stage I under Symmetrically Incomplete Infor-
mation:) The collaboration game admits the following unique

equilibrium.

• If V < n0μ, the client will not initiate the collaboration

and choose R∗ = 0.

• If V ≥ n0μ, the client will announce a reward R∗ = n0μ.

A set of n0 users will collaborate in Stage II. The

collaborators achieve a zero expected payoff, and the

client achieves a profit V − n0μ.

D. Collaboration under Asymmetrically Incomplete Informa-
tion

In this subsection, we study the case where each user i
knows his own exact cost Ci, but not other users’ costs. The

client only knows F (·).
1) Analysis of Stage II: We have the following result for

Stage II.

Theorem 4: (Stage II under Asymmetrically Incomplete In-
formation): A user i will collaborate if and only if Ci ≤
γ∗(R). The common equilibrium decision threshold γ∗(R) is

the unique solution of Φ(γ) = 0, where

Φ(γ) := Em

([
R

m+ 1
− γ

]
1{m+1≥n0}

)
, (3)

and the expectation is taken over m which follows a binomial

distribution B(N − 1, F (γ)). The equilibrium γ∗(R) satisfies
R
N < γ∗(R) < R

n0
.

We can also show that a user will not be better off by

changing from the current pure strategy to any mixed strategy.

To see why Stage II has the NE in Theorem 4, we consider

that all users other than i collaborate if and only if their costs

are less than some γ > 0. If user i collaborates, his payoff is[
R

m+ 1
− Ci

]
1{m+1≥n0},

where m follows a binomial distribution B(N − 1, F (γ)) and

represents the number of users (other than i) who collaborate.

(Recall that cdf F (γ) = P (Ci ≤ γ).) Accordingly, the

expected payoff of user i if he collaborates is

Em

([
R

m+ 1
− Ci

]
1{m+1≥n0}

)
, (4)
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Fig. 1. Φ(γ) as a function of γ and R. Other parameters are n0 = 40
and N = 100. We consider a uniform cost distribution with F (γ) =
min(γ/4, 1).

and zero otherwise. At the Nash equilibrium, (4) should equal

to 0 when Ci = γ. That is, having the common collaboration

threshold γ is a Nash equilibrium if and only if Φ(γ) = 0.

We denote the solution to (3) as γ∗(R), which is proved to be

unique in [23].

Figure 1 shows Φ(γ) as a function of both γ and R. The

solution γ∗(R) to Φ(γ) = 0 is always unique and satisfies
R
N < γ∗(R) < R

n0
.10 When R = 100, for example, we have

γ∗(R) = 2, which is larger than R/N = 1 and is smaller

than R/n0 = 2.5. It is also interesting to notice that all users

share the same decision threshold γ∗(R) although they have

different costs.

Theorem 5: The equilibrium decision threshold γ∗(R) in-

creases in R, and decreases in N and n0.

Intuitively, as N or n0 increases, more users will participate

in the collaboration and thus the shared reward per collaborator

decreases. As a result, the decision threshold decreases, and

each user is less likely to collaborate.
2) Analysis of Stage I: We are now ready to consider

Stage I. Given users’ equilibrium strategies based on threshold

γ∗(R) in Stage II in Theorem 4, the client chooses reward R
to maximize his expected profit, i.e.,

max
R

f(R) = En

(
[V −R]1{n≥n0}

)
, (5)

where the expectation is taken over n which follows a binomial

distribution B(N,F (γ∗(R))). A smaller reward R leads to a

larger value of V −R, but decreases the collaboration success

probability P (n ≥ n0;R).
Let us denote the client’s equilibrium choice of reward in

Stage I as R∗, which is derived by solving Problem (5).

Theorem 6: The equilibrium expected profit f(R∗) of the

client increases in V and N , and decreases in n0.

As the client’s revenue V increases, he benefits more from

the collaboration. As the threshold n0 increases, however,

each user is less likely to collaborate. Thus the client has to

give a larger total reward to attract enough collaborators. This

decreases his equilibrium expected profit.

10It should be noted that γ∗(R) should always be positive, otherwise no
users will collaborate and there exists no decision threshold then.
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Figure 2 shows that the client’s expected profit f(R) as a

function of R and N . We can see that both f(R) and the equi-

librium f(R∗) = maxR f(R) are increasing in N . Intuitively,

as N increases, more users have small collaboration costs (as

the cdf function F (·) does not change), and more users will

collaborate under the same total reward. Thus the client can

lower the equilibrium reward R∗ and obtain a larger profit.

By comparing the performances of the client and users

under complete information, symmetrically incomplete infor-

mation, and asymmetrically incomplete information, we have

the following result.

Theorem 7: At the equilibrium of the collaboration game,

the client obtains the smallest expected profit under asymmet-
rically incomplete information, whereas the users obtain the

smallest (zero) expected payoffs under symmetrically incom-

plete information.

Theorem 7 shows that the users benefit from knowing their

own costs, while the client incurs profit loss when the users

know their costs and can hide the information from the client.

Recall that the client obtains an expected profit V − n0μ
under symmetrically incomplete information, and obtains a

profit V − n0C0 under complete information. The relation

between these two values depends on N , n0, and F (·). Take

the uniform distribution F (·) as an example. If n0 is much

smaller than N/2, the expected value of C0 will be smaller

than μ and the client is better off under complete information.

III. COLLABORATIONS ON DISTRIBUTED COMPUTING

A. System Model on Distributed Computation

In this type of applications, the client solicits the collab-

oration of users to perform distributed computing. Different

from requiring fixed and periodic data reporting as in data

acquisition applications, the client here can assign different

amounts of work to different user types. Smartphones are

generally different in terms of CPU performance, memory

and storage, battery life, and connectivity [15]. Even with

the same smartphones, two users may have different phone

usage behaviors and different sensitivities (e.g., to power

consumption).

We consider a total of N users belonging to a set I =
{1, · · · , I} of I types. Each type i ∈ I has Ni ≥ 1 users,

with
∑

i∈I Ni = N . A type-i user can perform at most

t̄i units of work, and faces a cost Ki per unit of work he

performs. The upper bound t̄i reflects the limited battery

capacity, time constraint, or other physical constraints. It

should be noted that here users know their unit costs before

the collaboration, since (i) many factors of these costs (e.g.,

power consumption) are explicitly reflected by smartphones’

technical specifications, and (ii) users explicitly know their

own sensitivities (e.g., to power consumption) in costs.11

The payoff of a type-i user who accomplishes t units of

work and receives a reward r from the client is

ui(r, t) = r −Kit, for 0 ≤ t ≤ t̄i. (6)

Note that the user can always choose not to collaborate with

the client and thus receive zero payoff with t = r = 0. Without

loss of generality, we order user types in the descending order

of the unit cost, i.e., K1 > K2 > ... > KI , i.e., a higher type

of user has a smaller cost.

By asking each type-i user to accomplish the amount ti of

work and rewarding him with ri, the client’s profit is

π({(ri, ti)}i∈I) =
∑
i∈I

(θi log(1 +Niti)−Niri) . (7)

The term θi log(1 + Niti) is increasing in users’ efforts and

well characterizes the client’s diminishing return (or utility)

from the total work Niti finished by type-i (as in [25], [26]).12

The parameter θi > 0 characterizes the client’s preference for

work performed by type-i users, and does not depend on Ki.

In particular, θi’s may or may not be decreasing in i. The term

Niri in (7) is the total reward that the client offers to type-

i users. The summation operation in (7) is motivated by the

fact that many complex engineering or commercial problems

can be separated into multiple subproblems and solved in a

distributed manner [12].

By examining (6) and (7), we can see that the client and

users have conflicting objectives. The client wants users to

accomplish a larger task, which increases the client’s utility

as well as users’ collaboration costs. Users want to obtain

a larger reward, which decreases the client’s profit. Next we

study how client and users interact through a contract.

B. Contractual Interactions between Client and Users

Contract theory studies how an economic decision-maker

constructs contractual arrangements, especially in the presence

of asymmetric (private) information [27]. In our case, the user

types are private information.

The client proposes a contract that specifies the relationship

between a user’s amount of task t and reward r. Specifically,

a contract is a set C = {(t1, r1), . . . , (tM , rM )} of M ≥ 1
(amount of task, reward)-pairs that are called contract items.

11Recall that in data acquisition, users’ costs mainly come from implicit
insecurity and they may not know their collaboration costs.

12The assumed logarithmic utility term helps us derive closed-form solu-
tions and engineering insights. Using other concave terms are not likely to
change the main conclusions.



The client proposes C. Each user selects a contract item

(tm, rm) and performs the amount of work tm for the reward

rm. According to [27], it is optimal for the client to design

a contract item for each type, i.e., M = I . Note that a user

can always choose not to work for the client, which implies

an implicit contract item (r, t) = (0, 0) (often not counted in

the total number of contract items). Once a user accepts some

contract item, he needs to accomplish the task and the client

needs to reward him according to that item.

Each type of users selects the contract item that maximizes

his payoff in (6). The client wants to optimize the contract

items and maximize his profit in (7). We will again focus on

a two-stage Stackelberg game, where the client proposes the

contract first and users choose the contract items afterwards.

Next, we study how the client determines the contract that

maximizes his profit, depending on what information he has

about the users’ types. As explained in the beginning of

Section III-A, we assume that a user knows his unit cost.

This means that we only need to consider two information

scenarios, complete information and asymmetrically incom-

plete information, depending on what the client knows. Most
of proofs are lengthy and are given in our online technical
report [23] due to page limit.

C. Contract Design under Complete Information

In this subsection, we study the case where the client knows

the type of each user. This makes it possible for the client to

monitor and make sure that each type of users accepts only

the contract item designed for that type. The client needs to

ensure that each user has a non-negative payoff so that the user

will accept the contract. In other words, the contract should

satisfy the following individual rationality constraints.

Definition 1 (IR: Individual Rationality): A contract satis-

fies the individual rationality constraints if each type-i user

receives a non-negative payoff by accepting the contract item

for type-i, i.e.,

ri −Kiti ≥ 0, ∀i ∈ I. (8)

Under complete information, the optimal contract C =
{(r∗i , t∗i )}i∈I solves the following problem:

max
{(ri,ti)}i∈I

π({(ri, ti)}i∈I)

=
∑
i∈I

(θi log(1 +Niti)−Niri),

subject to: IR constraints (8) and 0 ≤ ti ≤ t̄i, ∀i ∈ I. (9)

It is easy to check that the IR constraints are tight at the

optimal solution to Problem (9), and the client will leave a zero

payoff to each type-i user with r∗i = Kit
∗
i . Also, due to the

independence of each type in Problem (9), we can decompose

Problem (9) into I subproblems. For each type i ∈ I, the

client needs to solve the following subproblem

max
ti

πi(ti) = θi log(1 +Niti)−NiKiti,

subject to: 0 ≤ ti ≤ t̄i. (10)

By solving all I subproblems, we have the following result.

Theorem 8 (Optimal Contract under Complete Information):
At the equilibrium, the client will hire the type-i users if

θi > Ki. The total involved user type set is

IC = {i ∈ I : θi > Ki}. (11)

The subscript C in IC refers to the complete information

assumption. For a user with type i ∈ IC , the equilibrium

contract item is

(r∗i , t
∗
i ) = (Kit

∗
i , t

∗
i )

=

(
min

(
θi −Ki

Ni
,Kit̄i

)
,min

(
θi −Ki

KiNi
, t̄i

))
. (12)

For a user with type i /∈ IC , the equilibrium contract item is

(r∗i , t
∗
i ) = (0, 0). All users (no matter joining collaboration or

not) receive a zero payoff. The client’s equilibrium profit is

π∗ =
∑
i∈IC

min

(
θi log

(
θi
Ki

)
− θi +Ki, θi log(1 +Nit̄i)−NiKit̄i

)
.

(13)

Proof. By observing Problem (10), the client will only hire

type-i users when his marginal utility is larger than marginal

cost (i.e., reward to users) at ti = 0. That is,

dπi(ti)

dti
|ti=0 =

(
Niθi

1 +Niti
−NiKi

)
|ti=0 = Ni(θi−Ki) > 0,

Thus the client will hire type-i users only when θi > Ki. Since

πi(ti) is concave in 0 ≤ ti ≤ t̄i, we can directly examine the

first-order condition of πi(ti) over ti for each type. Then we

can derive the equilibrium contract item for type-i in (12).

By substituting all contract items into the objective function

in Problem (9), we can further derive the client’s equilibrium

profit in (13).

Intuitively, the client needs to compensate a collaborator’s

cost, thus he will hire type-i users only when his preference

characteristic θi is larger than the unit cost of that type Ki.

Users will receive a zero payoff since their private information

about unit costs are known to the client.

By looking into all parameters in the equilibrium contract in

(12) and payoff π∗ in (13), we have the following observation.

Observation 1: For i ∈ IC , the equilibrium task t∗i to a

type-i user increases in θi, and decreases in Ni and Ki. Also,

the client’s equilibrium profit π∗ increases in θi, Ni, and t̄i,
and decreases in Ki.

By looking into (12), we also have the following result.

Observation 2: The client may or may not offer a larger

task or reward to a higher type-i collaborator, depending on

the number of collaborators Ni and the client’s preference

characteristic θi for that type.

Notice that a higher type-i collaborator has less unit cost

where the client needs to compensate, but the client may not

give him a larger task or reward. This can happen when there

are too many collaborators of that type, or the client evaluates

this type with a small value of θi.

D. Client’s Contract Design under Asymmetrically Incomplete
Information

In this subsection, we study the case where the client only

has asymmetrically incomplete information about each user’s

type. A user’s actual type is only known to himself, and the

client and the other users only have a rough estimation on



this. We consider that others believe a user belonging to type-

i with a probability qi. Everyone knows the total number of

users N .13

1) Feasibility of contract under asymmetrically incomplete
information: According to [27], the client’s contract should

first be feasible in this scenario. A feasible contract must sat-

isfy both individual rationality (IR) constraints (Definition 1 in

Section III-C) and incentive compatibility constraints defined

as follows.

Definition 2 (IC: Incentive Compatibility): A contract sat-

isfies the incentive compatibility constraints if each type-i user

prefers to choose the contract item for his own type, i.e.,

ri −Kiti ≥ rj −Kitj , ∀i, j ∈ I. (14)

Under asymmetrically incomplete information, the client

does not know the number of users Ni of type-i. Let us

denote the users’ numbers of all types as {ni}i∈I , which are

random variables following certain distributions and satisfying∑
i∈I ni = N . Note that the realizations of {ni}i∈I depend

on N and probabilities {qi}i∈I of all types that a user may

belong to. The client’s profit for a particular realization of

{ni}i∈I is

π({(ri, ti)}i∈I , {ni}i∈I) =
∑
i∈I

(θi log(1 + niti)− niri).

(15)

Thus the client’s expected profit is

E{ni}i∈I [π({(ri, ti)}i∈I , {ni}i∈I)]

=

N∑
n1=0

N−n1∑
n2=0

...

N−∑I−2
j=1 nj∑

nI−1=0

N !qn1
1 ...q

nI−1

I−1 q
N−∑I−1

j=1 nj

I

n1!...nI−1!(N −∑I−1
j=1 nj)!

× π({(ri, ti)}i∈I , {ni}i∈I). (16)

The client’s profit optimization problem as

max
{(ri,ti)}i∈I

E{ni}i∈I [π({(ri, ti)}i∈I , {ni}i∈I)]

subject to: IR constraints in (8),

IC constraints in (14),

0 ≤ ti ≤ t̄i, ∀i ∈ I. (17)

The total number of IR and IC constraints is I2. Next, we

show that it is possible to represent these I2 constraints with

a set of much fewer equivalent constraints.

Proposition 1: (Sufficient and Necessary Conditions for
feasibility): For a contract C = {(ri, ti), ∀i ∈ I} with user

costs K1 > ... > KI , it is feasible if and only if all the

following conditions are satisfied:

1) Condition(+): r1 −K1t1 ≥ 0;

2) Condition(↑): 0 ≤ r1 ≤ ... ≤ rI and 0 ≤ t1 ≤ ... ≤
tK ;

3) Condition(≤): For any i = 2, ..., I ,

ri−1 +Ki(ti − ti−1) ≤ ri ≤ ri−1 +Ki−1(ti − ti−1).
(18)

Intuitively, Condition(+) ensures that all types of users

can get a nonnegative payoff by accepting the contract item

(r1, t1), as it implies r1 − Kjt1 ≥ 0 for all j ≥ 2. Thus

this can replace the IR constraints in (8). Condition(↑)
and Condition(≤) are related to IC constraints in (14).

13Users can know N by checking some third party’s market survey, or the
news on recent penetration or shipment of smartphones.

Condition(↑) shows that a user with a higher type should

be assigned a larger task, because his unit cost is lower (and

more efficient) and the client needs to compensate this user

less per unit work. Also, a larger reward should be given

to this user for the larger task undertaken by him, otherwise

this user will choose another contract item in order to work

less. Condition(≤) shows the relation between any two

neighboring contract items.
Based on Proposition 1, we can simplify the client’s prob-

lem in (17) as

max
{(ri,ti)}i∈I

E{ni}i∈I [π({(ri, ti)}i∈I , {ni}i∈I)]

subject to, Condition(+), Condition(↑), Condition(≤),

0 ≤ ti ≤ t̄i, ∀i ∈ I, (19)

where the previous I2 IR and IC constraints have been reduced

to I + 2 constraints.
2) Analysis by sequential optimization: Now we want to

solve the client’s optimal contract. However, (19) is not easy

to solve as it has coupled variables and many constraints.

The way we solve is a sequential optimization approach: we

first derive the optimal rewards {r∗i ({ti}i∈I)}i∈I given any

feasible tasks {ti}i∈I , then further derive the optimal tasks

{t∗i }i∈I for the optimal contract.

Proposition 2: Let C = {(ri, ti)}i∈I be a feasible contract

with any feasible tasks 0 ≤ t1 ≤ ... ≤ tI . The unique optimal

rewards {r∗i ({ti}i∈I)}i∈I satisfy

r∗1 ({ti}i∈I) = K1t1, (20)

r∗i ({ti}i∈I) = r∗i−1 +Ki(ti − ti−1)

= K1t1 +

i∑
j=2

Kj(tj − tj−1), ∀i = 2, ..., I.

(21)
Proof (Sketch): First, we can prove (20) by showing that

Condition(+) binds at the optimality. This guarantees the

IR constraints of the contract. Second, we can prove (21) by

showing that the left-hand side inequality in Condition(≤)
binds at the optimality. This guarantees the IC constraints of

the contract.

Based on Proposition 2, we can greatly simplify the client’s

optimization Problem in (19) as

max
{ti}i∈I

E{ni}i∈I [π({(r∗i ({ti}i∈I), ti)}, {ni}i∈I)]

subject to, 0 ≤ t1 ≤ ... ≤ tI ,

ti ≤ t̄i, ∀i ∈ I. (22)

Problem (22) can be solved by various methods in nonlin-

ear programming [28]. In the following, to avoid a loss of

optimality, we use exhaustive search to solve Problem (22).

This helps us explicitly compare the client’s performances in

different information scenarios.

Without solving Problem (22), we can already derive some

interesting results as follows.

Theorem 9: The total involved user type set under asym-

metrically incomplete information is

IA = {i ∈ I :

E{ni}i∈I [ni(θi −Ki)− (Ki −Ki+1)
∑

∀j>i,j∈I
nj > 0]}.

(23)



The subscript A in IA refers to the asymmetrically incomplete

information assumption.14 Compared with the collaborator set

IC under complete information case, here the client involves

less collaborators, i.e., |IA| ≤ |IC |. Moreover, the client

assigns a larger task and gives a larger reward to a higher type

of collaborator, which may not be the case under complete

information (see Observation 2). Only the lowest type of

collaborator(s) in set IA obtains a zero payoff, and higher

types of collaborators in set IA obtain positive payoffs that

are increasing in their types.

Proof: All involved users in set IA will receive positive

rewards and tasks. According to Condition(↑), the rewards

and tasks are non-decreasing in the types. Let us denote the

lowest type of involved users in set IA as type-ĵ. If ĵ = 1,

then relation (20) shows that a type-1 collaborator receives

a zero payoff. If ĵ > 1, then any lower type k < ĵ is not

in set IA, and receives zero task and zero reward. By using

relation (21), we can further derive that r∗
ĵ
= Kĵt

∗
ĵ
, which

means the lowest type collaborator still obtains a zero payoff.

According to (21), the type-i collaborator’s equilibrium

payoff is r∗i −Kit
∗
i = r∗i−1 −Kit

∗
i−1, which is strictly larger

than type-(i − 1) collaborator’s payoff r∗i−1 − Ki−1t
∗
i−1 as

Ki < Ki−1. Thus a higher type collaborators receive a larger

positive payoff.

Next we show which types of users are involved as collab-

orators. The first derivative of the client’s expected profit in

(16) over ti is
∂E{ni}i∈I [π({(r∗i ({ti}i∈I), ti)}, {ni}i∈I)]

∂ti

=

N∑
n1=0

N−n1∑
n2=0

...

N−∑I−2
j=1 nj∑

nI−1=0

N !qn1
1 ...q

nI−1

I−1 q
N−∑I−1

j=1 nj

I

n1!...nI−1!(N −∑I−1
j=1 nj)!⎛

⎝ niθi
1 + niti

− niKi − (Ki −Ki+1)
∑

∀j>i,∀j∈I
nj

⎞
⎠ , ∀i ∈ I,

(24)

where ti only appears in the last bracket. The client will

involve type-i users only when the last bracket of (24) is

positive at ti = 0. This leads to the collaborator set in (23).

By comparing IC in (11) and IA in (23), we conclude that

|IA| ≤ |IC |.
Intuitively, as the client does not know each user’s type, he

needs to provide incentives (in terms of positive payoffs) to

the users to attract them revealing their own types truthfully.

If he involves a low type user, he needs to give increasingly

higher payoffs to all higher types. Thus he should target at

users with high enough types. We have |IA| smaller than |IC |,
which means that some low types belong to set IC may not

be included in set IA. By comparing (23) and (11) for the

highest type-I , we know that that this type is involved in both

information scenarios.

Recall that under complete information, Observation 2

shows that the client may not give a larger task and reward to a

higher type-i collaborator. This can happen when θi is small or

the number of users of that type is large. Under asymmetrically

14Note that the client will design (r∗, t∗) = (0, 0) for the types not in set
IA. Thus the users of these types are not involved as collaborators.
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Fig. 3. The client’s optimal contract items for three types (I=3). Other
parameters are N = 120, K1 = 1.5, K2 = 1, K3 = 0.5, θi = 5, and
qi = 1/3 for any i ∈ I.

incomplete information, however, the IC constraints require

the reward and task to be nondecreasing in the collaborator

types, independent of θi and the number of users in each type

(which is a random variable). Otherwise, some collaborators

will have incentives to choose contract items not designed for

their own types, and thus violate IC constraints. This is not

optimal for the client based on the Revelation Principle [27].

Figure 3 shows the client’s optimal contract {(r∗i , t∗i )}3i=1

for three collaborator types. A higher type-i user obtains a

larger task t∗i , a larger reward r∗i , and a larger payoff (not

shown in this figure). The slope of the dashed line between

two points (r∗i , t
∗
i ) and (r∗i+1, t

∗
i+1) equals to cost Ki+1 (as

shown in Proposition 2). In the contract, the ratio between

the reward and task (i.e., r∗i /t
∗
i ) for type-i decreases with the

type. Thus a lower type j < i collaborator will not choose the

higher contract item (r∗i , t
∗
i ), since it is too costly and not be

efficient for him to undertake the task. A user will not choose

a lower type contract item either, otherwise his payoff (though

still positive) will decrease with a smaller reward.

Observation 3: The client’s optimal task allocation t∗i to a

type-i collaborator increases in the client’s preference charac-

teristic θi and decreases in the collaborator’s cost Ki. The

client’s equilibrium expected profit increases in θi for all

i ∈ IA.

Next, we compare the client’s profits under complete and

asymmetrically incomplete information.

Observation 4: Compared with complete information, the

client obtains a smaller equilibrium expected profit under

asymmetrically incomplete information. The gap between his

realized profit under two information scenarios is minimized

when the realization (users’ numbers in different types) is the

closest to the expected value.

Figure 4 shows the ratio of the client’s realized payoffs

under asymmetrically incomplete and complete information,

which is a function of users’ realizations {ni}3i=1 in all three

types. This ratio is always no larger than 1, as the client obtains

the maximum profit under complete information. This profit

ratio reaches its maximum 92% when users’ type realization

matches the expected value, i.e., ni = Nqi = 40 for i = 1, 2
(and thus n3 = N −n1 −n2 = 40 as well). This is consistent
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with the fact that the client maximize its expected profit under

asymmetrically incomplete information.

IV. CONCLUSION

This paper analyzes and compares different mechanisms that

a client can use to motivate the collaboration of smartphone

users on both data acquisition and distributed computing.

Our proposed incentive mechanisms cover several possible

information scenarios that the client may face in reality.

For data acquisition applications, we propose a reward-

based collaboration scheme for the client to attract enough

users by giving out the minimum reward. We show that

when the client knows the users’ collaboration costs, he only

involves users with the lowest costs to build up the database.

However, if users can hold their private information from the

client, the client needs to offer a larger reward to get enough

collaborators.

For distributed computing applications, we use contract

theory to study how a client decides different task-reward com-

binations for many different types of users. Under complete

information, the client involves a type of users as long as his

preference of that type outweighs that the user’s unit cost.

All collaborators receive a zero payoff in this case. Under

asymmetrically incomplete information, however, the client

has to offer a larger reward to a higher user type. Most col-

laborators then receive a positive payoff, and a collaborator’s

payoff increases in his type.

There are several possible ways to extend the results in this

paper. For the data acquisition applications, for example, we

can consider a flexible revenue model instead of a threshold

one. For example, Google can still benefit if a few users take

pictures of some critical events. It is also interesting to study

the repeated collaborations between the client and users.
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