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1.1 Abstract

In this chapter, we consider the problem of energy conservation of mobile
terminals in a multi-cell TDMA network supporting real-time sessions. The
corresponding optimization problem involves joint scheduling, rate control,
and power control, which is often highly complex to solve. To reduce the so-
lution complexity, we decompose the overall problem into two sub-problems:
intra-cell energy optimization and inter-cell interference control. The solution
of the two subproblems results in a “win-win” situation: both the energy con-
sumptions and inter-cell interference are reduced simultaneously. We simulate
our decomposition method with the typical parameters in WiMAX system,
and the simulation results show that our decomposition method can achieve
an energy reduction of more than 70% compared with the simplistic maximum
transmit power policy. Furthermore, the inter-cell interference power can be
reduced by more than 35% compared with the maximum transmit power pol-
icy. We find that the interference power stays largely constant throughout a
TDMA frame in our decomposition method. Based on this premise, we derive
an interesting decoupling property: if the idle power consumption of terminals
is no less than their circuit power consumption, or when both are negligible,
then the energy-optimal transmission rates of the users are independent of the
inter-cell interference power. ∗

∗This work is supported by AoE grant E-02/08 from the UGC of the Hong Kong SAR,
China, the General Research Funds (Project Number 412511, 412710, and 414911) estab-
lished under the University Grant Committee of the Hong Kong Special Administrative
Region, China, the Sogang University Research Grant of 2011, US NSF CNS-1011962, a
Princeton Grand Challenge grant, and a Google grant. The key results of this chapter are
drawn from [1].
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1.2 Introduction

The main objective of green wireless research is to reduce the carbon footprint
and energy consumption of information technology (IT) industry. There are
more than 4 billion cell-phones in the world [2], and wireless devices and equip-
ments consume 9% of the total energy of IT, i.e., as much as 6.1 TWh/year [3].
Future wireless systems such as 3GPP-LTE or WiMAX2 are evolving to sup-
port broadband services that demand a higher capacity than can be provided
by today’s wireless networks. In most cases, this is achieved at the expense of
higher energy consumption and severe impact on the environment.

Cellular networks are not likely to be fully utilized all the time [4]. That
is, cellular networks are often designed to support peak traffic load rather
than the average traffic load. A substantial amount of bandwidth is reserved
for time varying, non-stationary loads, and to facilitate handoffs in cellular
system. As a result, cellular networks are often under-utilized. As will be seen,
exploiting this fact can reduce energy consumption without compromising the
users’ perceived quality of service (QoS).

Like other under-utilized network elements such as servers in the data
centers or switches/routers in the Internet, one of energy saving techniques in
cellular networks is to turn off the under-utilized base stations when necessary,
i.e., during the night or for the area where traffic is low. There have been
extensive studies on base station energy conservation [5–9]. In this chapter,
however, we will focus on reducing the energy consumption of mobile users,
which not only addresses the environmental concern, but can also lengthen
the battery lifetime of devices and improve users’ experiences. In particular,
we will consider a time-division-multiple-access (TDMA) cellular network. In
each cell, a base station serves a number of users. The transmissions of these
users do not overlap in time. However, the transmissions of users in different
cells may overlap and interfere with one another. Each user has a certain traffic
requirement. We want to answer the following question: how do we schedule
the uplink transmissions so as to minimize the total energy consumption while
satisfying the traffic requirements of all users?

The gist of the problem is as follows. In the absence of interference, for

a transmission, Shannon’s capacity formula states that x = w log
(

1 + pG

σ2

)

,

where x is the data rate, w is the bandwidth, p is the transmit power, G is
the channel gain, and σ2 is the noise power. Suppose that the transmission is
turned on for T seconds within a frame. Then, the number of nats delivered
per frame is b = xT = wT log

(

1 + EG
Tσ2

)

, where E is the energy consumption
per b nats. From this expression, we immediately see a tradeoff between the
transmission time T and the energy E when delivering b nats: increasing the
transmission time T makes E smaller.
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1.2.1 Challenges and Our Solution

The energy conservation problem in multi-cell networks is complicated in two
ways:

1. Intra-cell interaction: Each TDMA frame has a finite amount of time
resource. Within each cell, a longer transmission time of one terminal
means a less transmission time for other terminals. Thus, their transmit
energies trade off against each other.

2. Inter-cell interaction: Across cells, the interference received by a base sta-
tion depends on simultaneous transmissions in other cells. If simultaneous
transmissions can be properly scheduled, mutual interferences can be re-
duced, which in turn can reduce the total energy consumption. This can be

intuitively seen from b = wT log
(

1 + EG
T (σ2+q)

)

, where q is the interference;

that is, all things being equal, a smaller E is required if the interference q
can be reduced.

Thus, in general the energy conservation and the inter-cell interference are
coupled. To minimize the total energy consumption, we need to jointly con-
sider the time fraction allocated to each transmission within each cell and the
scheduling of simultaneously transmissions across cells. Besides the transmit
energy E, wireless devices also consume circuit energy when they transmit,
and “idle” energy when they do not. The relative magnitudes of these energies
have a subtle but important effect on the solution to our problem.

Finding an overall optimal solution to the energy minimization problem is
non-trivial, as elaborated in Section 1.4. In this chapter, we propose a method
that decomposes the overall problem into two sub-problems along the line of
1 and 2 above. That is, we first consider the sub-problem of intra-cell time
fraction allocation, assuming interference is constant throughout a frame (this
assumption is to a large extent valid according to our simulation experiments
– see Section 1.6.2). After the transmission time fractions (and target SINRs)
in each cell are fixed, we then consider the transmission scheduling across
cells and set the transmit powers of the terminals to fulfill the target SINRs.
Based on the solution to the second sub-problem, we then adjust the inter-cell
interferences and solve the first sub-problem again. The process is iterated, if
necessary, by alternating between these two modules.

The solution found by this decomposition method is guaranteed to be
feasible, albeit not necessarily optimal. Simulations indicate that this decom-
position method can achieve energy reduction of more than 70% and inter-cell
interference power reduction of more than 35% compared with the simplistic
scheme of maximum power transmission. We also derive an interesting de-
coupling property under the assumption that the inter-cell interference power
stays constant over a TDMA frame: if the idle power consumption of terminals
is no less than their circuit power consumption, or when both are negligible,
then the energy-optimal transmission rates of the users are independent of the
inter-cell interference power.
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1.2.2 Related Work

The key focus of early research on cellular networks was on interference control
instead of energy saving. The network performance maximization problem
was often posed as maximizing the system throughput while meeting some
required signal to interference-and-noise ratio (SINR) to achieve a target data
rate, e.g., for reliable voice connections [10–17].

Energy-efficient transmission schemes were first explored in the context of
sensor networks [18–21]. In [21], each sensor node transmits packets as slowly
as is allowed by some delay constraint, using the so-called lazy scheduling.
Lazy scheduling reduces energy consumption by making use of all available
time resource before the deadline, thus make the bursty arrival packets as
smooth as possible at the output.

The energy-delay tradeoffs in wireless networks have been explored under
various channel models [22,23]. Ref. [22] studied the problem of minimizing the
average transmit power with delay constraint under fading channels. Ref. [23]
studied the energy-delay tradeoffs under the additive white Gaussian noise
(AWGN) channels with bursty traffic. Under the fading channels, [24,25] con-
sidered the use of opportunistic scheduling to reduce energy consumption. The
key idea is opportunistic transmission, where terminals transmit only when
the channel conditions are good enough so that the same traffic requirement
can be satisfied with smaller energy consumption.

The key results related to energy-delay tradeoff in sensor networks are built
upon the Shannon’s capacity formula, which are applicable to general wire-
less systems. Therefore, the extensive energy-delay tradeoff results in sensor
networks can also shed some light on the energy saving in cellular networks.
However, the QoS requirements for sensor networks and for cellular networks
are quite different. In sensor networks, the system traffic load is usually small,
and often there is no strict rate requirement for each user. The transmission
requirement is usually characterized by a delay constraint. However, for cel-
lular networks, the system traffics are usually voice/video connections or file
transfers, which are much heavier than those in sensor networks. Furthermore,
the QoS requirement for voice/video connections is usually characterized by
a strict target-rate requirement, which is more stringent than those in sensor
networks. Therefore, the energy saving in cellular networks requires different
formulations and solution techniques.

Recent research results show that if the circuit power (e.g., the power con-
sumption of the circuit blocks, e.g., mixers, filters, D/A converters) is taken
into account, slow transmission is not always energy efficient [26–28]. This
is because that although the transmission energy consumption decreases as
the transmission time grows, the circuit energy consumption increases as the
transmission time grows. Thus, sometimes fast transmissions may be bene-
ficial to energy conservation. Indeed, there is an energy optimal transmis-
sion rate when the circuit power consumption is taken into consideration.
Ref. [29] studied the problem of minimizing the total energy consumption, in-
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cluding both the transmit and circuit energy consumption, in a multiple-input
multiple-output (MIMO) cellular network. It was shown that by swiching the
transmission mode between MIMO and SIMO (single-input multiple-output),
significant energy-saving can be achieved. Optimizing the total transmission
energy including the circuit power was also considered in IEEE 802.16m
WiMAX2 [30, 31]. In optimizing the energy efficiency, there are mainly two
kinds of metrics. The first one is to minimize the total energy consumption
per bit (or per flow) [29,32,33], and the other is to maximize the energy util-
ity, which is defined as the total bits that can be delivered per Joule [34–37].
The idea of leveraging spare capacity of TDMA cellular systems to save mo-
bile terminals’ total energy consumptions under stochastic traffic loads has
been explored in [33]. Similar idea can be easily applied to the frequency divi-
sion multiple access (FDMA) cellular system. It was shown that, by properly
choosing the transmit powers, as well as the instantaneous rates and the time
fractions of the users within a cell, average energy consumption per real-time
session can be minimized. In addition, it was demonstrated that energy saving
ratio is substantial, e.g., more than 50% when the network is under-utilized.

However, most of these works [29,30,33] focused on the saving the energy
consumption in the single-cell case (interference-free environment). The multi-
cell case is of much interest because practical deployments of wireless networks
contain multiple cells. In a multi-cell network, the inter-cell interference power
not only affects the energy consumptions of the users but also affects the per-
ceived QoS by the users in the system. In general, the energy conservation
and the inter-cell interference are tightly coupled. A very recent paper [37]
studied the energy-efficient power control in OFDMA based multi-cell net-
works. The authors proposed a distributed non-cooperative game approach
to maximize the overall network energy efficiency, which achieves a trade-off
between system throughput and energy consumption. However, no QoS guar-
antees are provided to the users in the system. In this chapter, our focus is
to conserve the total energy consumptions in a multi-cell TDMA network,
while satisfying the QoS requirement of each user in the system. We find that
combining intra-cell time fraction allocation and inter-cell scheduling/power
control can potentially be more energy-efficient. Extensive simulations by us
verify that combining energy-optimal transmission with inter-cell power con-
trol could improve the energy efficiency by 50% compared with the case when
only intra-cell energy optimal transmission, as in [33], is performed.

The remainder of this chapter is organized as follows. In Section 1.3, we
describe our system model and assumptions. Section 1.4 is devoted to the
problem formulation. The proposed energy-efficient policy is provided in Sec-
tion 1.5. We provide the simulation results in Section 1.6. In Section 1.7, we
discuss possible future works, followed by the conclusion in Section 1.8.
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1.3 System Model

We consider energy efficient uplink communications in wireless cellular net-
works. Within each cell, the users send traffic to the same base station (BS)
via Time Division Multiple Access (TDMA). The time is divided into fixed
length frames. Within a frame, each user is allocated a dedicated time period,
during which it is the only uplink transmitter within the cell. There is no
interferences among users in the same cell. The concurrent transmissions of
different users at different cells, however, lead to inter-cell interferences. We
would like to choose the proper time allocations and transmission powers for
users in multiple cells, such that the total energy consumption is minimized
while satisfying the QoS requirements.

1.3.1 Power Consumption Model

We consider a comprehensive terminal power consumption model, which in-
cludes the transmit power, the circuit power, and the idling power [18,29,33,
38].

A terminal’s transmission rate x depends on the transmit power p accord-
ing to Shannon’s capacity formula:

x = w log

(

1 +
pG

σ2 + q

)

⇔ p =
(

exp
( x

w

)

− 1
) σ2 + q

G
, (1.1)

where w is the bandwidth, G is the channel gain, σ2 is the noise power, and q
is the inter-cell interference. There is drain efficiency of the RF power amplifier
at a transmitter, denoted by θ ∈ (0, 1), which is defined as the ratio of the
output power and the power consumed in the power amplifier. Therefore,
given an output power of p, the power consumption at the RF amplifier of a
transmitter is p/θ†.

Besides the transmit power, an active terminal also consumes non-
negligible circuit power [18,29], which is the power of the circuit blocks in the
transmission chain, e.g., mixers, filters, local oscillators, and D/A converters.
When a transmitter is idle, there is also power consumption due to leakage
currents [38]. Therefore, the total power consumption f(x) of a terminal with
transmission rate x is given as

f(x) =

{

(

exp
(

x
w

)

− 1
)

σ2+q
θG

+ α, if x > 0 (active),

β, if x = 0 (idling),
(1.2)

†In practical wireless systems, different modulation schemes and forward error correction
(FEC) codes may be used. Compared with the Shannon’s capacity formula, the impact of
adaptive modulation and coding (AMC) schemes results in a constant SINR gap [39]. This
constant factor can be absorbed by the parameter θ, which denotes the cumulative effect of
the drain efficiency, modulation and FEC.
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where α is the circuit power when a terminal is active, and β is the power
consumed in idle state. In Section 1.4.3 and Section 1.5, we will show that the
circuit power and the idling power have a substantial impact on the time and
power solutions of energy efficient transmissions.

Main notations of this chapter are summarized in Table 1.1. We use lower
boldface symbols (e.g., p) to denote vectors and uppercase boldface symbols
(e.g., B) to denote matrices. We use calligraphic symbols (e.g., A) to denote
sets. The vector inequalities denoted by � and � are component-wise.

1.3.2 Inter-cell Interference

Consider a system with a set of M cells: {C(m), 1 ≤ m ≤ M}. Each cell
C(m) contains a set of users (terminals) A(m). The users within the same
cell are allocated different time fractions for uplink transmissions. However,
users in different cells may transmit simultaneously and cause interference
to each other. As can be seen from (1.1), the transmit power consumption
is closely related to the interference power level. Given a fixed transmission
rate x, a larger inter-cell interference power q leads to a larger transmit power
p. Next we calculate the minimum transmit power vector and the minimum
interference power vector that can support the rate requirements of several
simultaneous transmissions.

Let S denote the set of users that are active simultaneously in the multi-
cell network at a particular instant. Since TDMA is considered within each
cell, the size of set S is no larger than the number of cells M , i.e., |S| ≤ M .
Without loss of generality, we only need consider the |S| cells with active users.
Let us define an |S| × |S| nonnegative cross channel gain matrix GS = [gmn],
with entries as follows:

gmn =

{

0, if m = n,

Gi(n),C(m), if m 6= n,
(1.3)

where Gi(n),C(m) is the channel gain from user i(n) in cell C(n) to the BS of
cell C(m). We further define an |S| × |S| nonnegative relative-channel-gain
matrix BS of set S, which is the cross channel gain matrix GS normalized by
the direct channel gains. The elements in matrix BS = [bmn] are as follows:

bmn =

{

0, if m = n,
Gi(n),C(m)

Gi(m),C(m)
, if m 6= n,

(1.4)

where Gi(m),C(m) is the channel gain from user i(m) in cell C(m) to the BS

of cell C(m). Let γS =
(

γi(m) : i(m) ∈ S
)

denote the target SINR vector of
the users in set S. Let D (γS) be the |S|× |S| diagonal matrix whose diagonal
entries are the elements in γS . The SINR requirements of the users in set S
can be written in matrix form as

(I−D (γS)BS)pS � D (γS)vS , (1.5)
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Table 1.1

Notation Summary ( [1], c© 2011 IEEE)

Notation Physical Meaning

m,n the indices of cell

i, j the indices of user

k the index of concurrent transmission set

A the set of all users in one cell

S the concurrent transmission set

M the number of cells

K the number of concurrent transmission sets in one frame

λ the arrival rate of users to the multi-cell network

r session rate requirement

x instantaneous transmission rate

p transmit power

q inter-cell interference power

σ2 noise power

γ target SINR requirement

w spectral bandwidth

α circuit power

β idling power

δ α− β

θ drain efficiency

Gi(m)C(m) the channel gain of user i(m) in cell C(m)

Gi(n)C(m)
the cross channel gain of user i(n) in cell C(n) to the

base station of cell C(m)

B relative channel gain matrix

ϕ Lagrange multiplier
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where I is an |S|×|S| identity matrix, and vector vS =
(

σ2

Gi(m),C(m)
: i(m) ∈ S

)T

is the noise power vector normalized by the channel gain.
Let ρ (D (γS)BS) denote the largest real eigenvalue (also called the

Perron-Frobenius eigenvalue or the spectral radius) of matrix D (γS)BS . The
following well-known proposition gives the necessary and sufficient condition
of checking the feasibility of a target SINR vector γS and computing the
minimum transmit power solutions that achieves γS .

Proposition 1.1 ( [40–42]). The necessary and suff icient condition for a
target SINR vector γS to be feasible is

ρ (D (γS)BS) < 1. (1.6)

If γS is feasible, the component-wise minimum transmit power to achieve γS

is

pS(γS) = (I−D (γS)BS)
−1

D (γS)vS . (1.7)

Proof sketch. By the Perron-Frobenius theorem [40], we know that ρ (D (γS)BS)
is a positive, simple eigenvalue of matrix D (γS)BS , and its corre-
sponding eigenvector is positive componentwise. From matrix theory, we
know that ρ (D (γS)BS) < 1 is a necessary and sufficient condition for

(I−D (γS)BS)
−1

to exist [41]. Furthermore, [42] shows that (1.7) is a Pareto-
optimal solution to (1.5). That is, any transmit power p that satisfies (1.5) is
component-wise no smaller than pS(γS), i.e., p � pS(γS).

The total interference and noise power at the BS of cell C(m) is given by

qC(m) =
∑

i(n)∈S,n6=m

Gi(n),C(m) · pi(n) + σ2,

which can be written in matrix form as

q = GS · p+ ηS . (1.8)

Proposition 1.2 ( [14]). The interference power vector of set S corresponding
to the minimum transmit power solution in (1.7) is given by

qS(γS) = (I−BSD (γS))
−1

ηS , (1.9)

where ηS =
(

σ2, σ2, · · · , σ2
)T

is the noise power vector. Each element in
qS(γS) denotes the interference power received by the corresponding base sta-
tion. Furthermore, qS(γS) is the component-wise minimum interference power
vector with the target SINR vector γS . That is, for any transmit power solution
p that achieves an SINR vector no less than γS , its corresponding interference
power vector q satisfies

q � qS(γS).
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Proof. The interference power vector corresponding to the transmit power
solution pS(γS) in (1.7) is

qS(γS) = GS · pS(γS) + ηS

= GS (I−D (γS)BS)
−1

D (γS)vS + ηS

= BS (I−D (γS)BS)
−1

D (γS)ηS + ηS

=
(

BS (I−D (γS)BS)
−1

D (γS) + I
)

ηS

= (I−BSD (γS))
−1

ηS .

For any transmit power solution p that achieves an SINR vector no less
than γS , we have p � pS(γS). Furthermore the cross channel gain matrix
GS is non-negative. According to (1.8), the interference power vector corre-
sponding to p satisfies q � qS(γS).

1.3.3 Dynamic User Sessions

We study a dynamic system with real-time application sessions (e.g.,
video/voice sessions). Our target is to minimize the average energy consump-
tion per session in a stationary system. We assume that the users’ arrival to
each cell C(m) follows a Poisson process with rate λC(m). Then the arrival

rate to all the cells is λ =
M
∑

m=1
λC(m). Let J be a random variable denoting

the energy consumption per session and P be a random variable denoting the
total power consumption in the system. The following proposition shows the
relation between E[P ] and E[J ] in a stationary system:

Proposition 1.3 ( [33]). In a stationary system with user arrival rate λ, we
have E[P ] = λE[J ].

According to Proposition 1.3, minimizing the average energy consumption
per session is equivalent to minimizing the average power consumption of all
the users in the system. Furthermore, there is a special feature for real-time
sessions: the connection duration of a real-time session is independent of the
allocated transmission rate. For example, allocating a higher transmission rate
to a voice session cannot make the phone call end earlier, and the stationary
distribution of the number of users in the TDMA system is independent of the
transmit powers as long as the rate requirements are satisfied [33]. Therefore,
minimizing the energy consumption in a dynamic system that supports real-
time sessions is equivalent to minimizing the energy consumption with a static
number of users in the TDMA system‡. In the rest of this chapter, we will

‡This only holds for dynamic systems that support real-time sessions, but does not
hold for other non-real-time sessions such as file transfer. For delay-tolerant non-real-time
sessions, the stationary distribution of the number of users heavily depends on the rate and
power control allocations of the users. For example, allocating a lower transmission rate to
a file transfer session will keep the corresponding user staying longer in the system.
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focus on the average power minimization problem in the multi-cell system
with a static number of users.

1.4 Problem Formulation and Decoupling Property

In this section, we will show that the energy conservation of mobile users
in a multi-cell TDMA network can be formulated as a joint scheduling and
power control optimization problem, which is quite challenging to solve in
general. We propose a decomposition method to tackle this problem based
on one key assumption: the interference power at the base station remains
constant within a time frame. This assumption is verified reasonable with
simulations results for our problem. Furthermore, we derive an interesting
decoupling property: if the idle power consumption of terminals is no less
than their circuit power consumption, or when both are negligible, then the
energy-optimal transmission rates of the users are independent of the inter-cell
interference power.

1.4.1 Power Minimization in Multi-Cell Networks

We assume that the frames are synchronized across all cells in the multi-cell
network. Without loss of generality, the frame duration is normalized to be
1. Since different users are active at different times in different cells, we will
have different concurrent transmission sets in the multi-cell network. Suppose
there are a total K concurrent transmission sets, denoted by {Sk, 1 ≤ k ≤ K}.
Each set Sk is active for a time fraction of tk (0 ≤ tk ≤ 1) within a frame.
If we consider all possible combinations of simultaneous active users, then

K can be as large as
M
∏

m=1
(|A(m)| + 1). For example, in a multi-cell network

with 19 cells with each cell having 9 users, we have K = 1019. Let xSk
=

(

xi(m)(k) : i(m) ∈ Sk

)

denote the instantaneous transmission rate vector of
set Sk. According to Shannon’s capacity formula, the relation between the
instantaneous transmission rate vector xSk

and the corresponding SINR vector
γSk

is

xSk
= w log

(

1 + γSk

)

⇔ γSk
= exp

(xSk

w

)

− 1. (1.10)

Substituting (1.10) into (1.7), then the minimal power vector pSk
that

supports xSk
is

pSk
(xSk

) =
(

I−D
(

exp
(xSk

w

)

− 1
)

BS

)−1

D
(

exp
(xSk

w

)

− 1
)

vS . (1.11)

Recall that A(m) is the set of users in cell C(m). For a user i(m) ∈
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A(m) with real-time sessions, its QoS requirement is measured as its session
rate requirement ri(m). We assume that there is call admission control that
guarantees that the system load is no larger than the system capacity. This
guarantees that the rate requirements of all the users admitted to system
can be satisfied. As shown in Section 1.3.3, under Proposition 1.3, given an
arrival rate λ to the system, the average energy consumption per session is
proportional to the expected power usage of all users at a moment in time
in a stationary system. Thus minimizing the average energy per session is
equivalent to minimizing the expected power usage of the system in a multi-
cell system. To represent this problem mathematically, we define the following
binary coefficients for each user i(m) ∈ A(m), 1 ≤ m ≤ M , and 1 ≤ k ≤ K,

zi(m)(k) =

{

1, if i(m) ∈ Sk,

0, if i(m) /∈ Sk.
(1.12)

Problem: Average Power Minimization in a Multi-cell Network

minimize
K
∑

k=1

tk





M
∑

m=1





∑

i(m)∈A(m)

(

(1− zi(m)(k))β

+zi(m)(k)

(

α+
pi(m)(k)

θ

))

))

subject to
K
∑

k=1

tk = 1,

K
∑

k=1

zi(m)(k) · xi(m)(k) · tk = ri(m), ∀i(m), ∀m,

variables xi(m)(k) ≥ 0, ∀k, ∀i(m), ∀m,

tk ≥ 0, ∀k.

(1.13)

The objective function in (1.13) is the total average power consumption
of all the users in the system and consists of two parts. The first part is the
power consumption when the users are idle. The second part is the power
consumption when the users are active in transmissions, where pi(m)(k) is
computed according to (1.11) as a function of xSk

. The first constraint in
(1.13) states that the total time allocated to all the concurrent transmission
sets equals the frame length, which is normalized to be 1. Here, we treat the
case where no user is active in any cell as a special concurrent transmission set
of Sk = ∅. The second constraint in (1.13) states that each user’s session rate
requirement is satisfied. The variables in (1.13) are the time fraction variables
tk and the instantaneous rate variables xi(m)(k).

It is challenging to solve Problem (1.13) directly and optimally. First,
if we consider all possible combinations of simultaneous active users, then
the total number of concurrent transmission sets K increases exponentially
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with the cell number M . Second, the transmit power pi(m)(k) in the objective
function of (1.13) is a complicated function of the instantaneous rate variables
xi(m)(k)’s. The transmit power is different for each user i(m) and each different
concurrent transmission set Sk.

In this chapter, we focus on designing a heuristic algorithm to solve Prob-
lem (1.13) based on one key assumption:

Assumption 1.1. For each cell C(m), we assume the interference experi-
enced by the BS, q(m), remains constant within a time frame.

Assumption 1.1 is later verified reasonable with the simulation results in
Section 1.6.2. With this assumption, the users’ transmission schedule in one
cell does not affect the transmissions in other cells. Without loss of generality,
we will simply assume that the transmission order of the users in each cell is
fixed based on the arrival order of the corresponding sessions. We will tackle
Problem (1.13) by solving intra-cell average power minimization and inter-cell
power control separately.

1.4.2 Intra-Cell Average Power Minimization

Based on Assumption 1.1, the average power minimization problem of a given
cell turns out to be a convex optimization problem. Let us consider cell C(m).
The session rate requirement of user i(m) ∈ Am is ri(m). If the instanta-
neous transmission rate of i(m) is xi(m), then the time fraction that user

i(m) needs to satisfy its session rate requirement is ti(m) =
ri(m)

xi(m)
. During

the time fraction ti(m), the power consumption of the active user i(m) is

exp
(xi(m)

w

)

−1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α. All other users in cell C(m) remain in idle

state during ti(m). The power consumption of all idle users during the time

fraction ti(m) is (|A(m)| − 1)β. If 1−
∑

i∈A(m)

ri(m)

xi(m)
> 0, then all users will re-

main idle during the time fraction of 1−
∑

i∈A(m)

ri(m)

xi(m)
, with the total power

consumption of |A(m)|β. The intra-cell average power minimization problem
can be formulated as follows:
Problem: Intra-Cell Average Power Minimization:

minimize
∑

i(m)∈A(m)

ri(m)

xi(m)

(

exp
(xi(m)

w

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α

+(|A(m)| − 1)β

)

+



1−
∑

i∈A(m)

ri(m)

xi(m)



 |A(m)|β

subject to
∑

i(m)∈A(m)

ri(m)

xi(m)
≤ 1,

variables xi(m) ≥ 0, ∀i(m) ∈ A(m).

(1.14)
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The objective in (1.14) is to minimize the total average power consump-
tions of all users in cell C(m) during the unit time frame. Since we consider
uplink transmissions, the base station is the common receiver for all the users
in A(m). Thus, the inter-cell interference power at the base station (i.e., q(m))
is the same for every user. The constraint in (1.14) states that the total active
time fraction is no larger than the frame length.

Problem (1.14) can be shown to be equivalent to,

minimize
∑

i(m)∈A(m)

ri(m)

xi(m)

(

exp
(xi(m)

w

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α− β

)

subject to
∑

i(m)∈A(m)

ri(m)

xi(m)
≤ 1,

variables xi(m) ≥ 0, ∀i(m) ∈ A(m).
(1.15)

If we change the variable xi(m) to the time fraction variable ti(m) =
ri(m)

xi(m)
,

Problem (1.15) is further equivalent to,

minimize
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

wti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α− β





subject to
∑

i(m)∈A(m)

ti(m) ≤ 1,

variables ti(m) ≥ 0, ∀i(m) ∈ A(m).
(1.16)

The second derivative of the objective function in (1.16) with respect to
variable ti(m) is

(

σ2 + q(m)
)

r2
i(m)

θGi(m)C(m)w2t3
i(m)

exp

(

ri(m)

wti(m)

)

,

which is always positive. So the objective function in (1.16) is convex. The con-
straints in (1.16) are linear constraints. Therefore, Problem (1.16) is a convex
optimization problem. The optimal instantaneous rate x∗

i(m) (or equivalently

the optimal time fraction t∗
i(m)) of the intra-cell power minimization prob-

lem in general depends on the inter-cell interference power q(m). To simplify
notation, let δ = α− β.

Next we show that the optimal solutions to the intra-cell power minimiza-
tion problem and the inter-cell interference power can be decoupled if δ ≤ 0.

1.4.3 Decoupling Property

If δ ≤ 0, the idling power β is no smaller than the circuit power α. Then we
have the following theorem. In addition, the theorem is also valid when both
the circuit power and the idling power are negligible (i.e., β ≈ α ≈ 0).
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Theorem 1.1. If δ ≤ 0, the optimal instantaneous transmission rate solu-
tions, the optimal time fractions, and the optimal target SINRs of the intra-
cell power minimization problem (1.15) (i.e., x∗

i(m), t∗
i(m), and γ∗

i(m) for all

i(m) ∈ A(m)) are independent of the inter-cell interference power level, the
circuit power, and the idling power.

Proof. The first order derivative of the objective function in (1.16) with re-
spect to variable ti(m) is

σ2 + q(m)

θGi(m)C(m)

(

−
ri(m)

wti(m)
exp

(

ri(m)

wti(m)

)

+ exp

(

ri(m)

wti(m)

)

− 1

)

+ δ. (1.17)

The first part of (1.17) (except δ) is always negative when 0 ≤ ti(m) ≤ 1.

This can be easily shown if we let ui(m) =
ri(m)

wti(m)
. The first part of (1.17) then

becomes

σ2 + q(m)

θGi(m)C(m)

(

−ui(m) exp
(

ui(m)

)

+ exp
(

ui(m)

)

− 1
)

. (1.18)

The first order derivative of (1.18) with respect to ui(m) is σ2+q(m)
θGi(m)C(m)

(

−ui(m) exp
(

ui(m)

))

, which is negative for any positive ui(m). So (1.18) is a
monotonically decreasing function of ui(m). When ui(m) = 0, (1.18) equals
zero. So (1.18) is negative for any positive ui(m). When 0 ≤ ti(m) ≤ 1, we have

ui(m) ≥
ri(m)

w
. So the first part of (1.17) is always negative when 0 ≤ ti(m) ≤ 1.

Therefore, when δ ≤ 0, (1.17) is always negative. So the object function in
(1.16) is a monotonically decreasing function of the transmission time fraction
ti(m). As a result, the optimal solution to Problem (1.16) is achieved when the
inequality constraint is tight, i.e.,

∑

i(m)∈A(m)

ti(m) = 1. In this case, minimizing

∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ δ





is equivalent to minimizing

∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)



 .

Furthermore, σ2 + q(m) becomes a common scaling factor in the objective
function and thus can be removed. Therefore, Problem (1.16) is equivalent to
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a simplified formulation where q(m) and δ can be removed:

minimize
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

Gi(m)C(m)





subject to
∑

i(m)∈A(m)

ti(m) = 1,

variables ti(m) ≥ 0.

(1.19)

This completes the proof.

The physical meaning of Theorem 1.1 is that if δ ≤ 0 (i.e., the idle power
consumption is no less than the circuit power consumption), the users in
the system will make use of all the time resource for transmissions in order
to minimize the system power consumption. When the whole time frame is
utilized, the interference power at the base station is a common influence
that affects all the users in the cell, which does not affect the time fraction
allocation among the users in the system. Theorem 1.1 will be referred to the
“decoupling property” for δ ≤ 0, which decouples the intra-cell average power
optimization from the inter-cell power control.

1.5 The DSP Algorithm

Theorem 1.1 motivates us to propose an algorithm, called Decomposed
Scheduling and Power control (DSP), to achieve energy-efficient transmissions
in a multi-cell system. Different values of δ will lead to different executions in
the algorithm.

1.5.1 DSP Algorithm When δ ≤ 0

Because of the decoupling property when δ ≤ 0, we will optimize the average
power consumption in two separate steps:

• Step 1 (intra-cell average power minimization): Each cell C(m) solves
Problem (1.19) to determine the optimal time fraction, the optimal in-
stantaneous rate, and the optimal target SINR of each user in A(m).

• Step 2 (inter-cell power control): Given the optimal target SINRs of the
users in each cell, we can get the optimal target SINR vector for the
users that are active simultaneously (i.e., in each set Sk). Then we will
compute the component-wise minimum power solution that satisfies the
target SINR vector.
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The flowchart of the DSP algorithm for the case δ ≤ 0 is shown in Fig.
1.1.

Step 1: Solve the convex optimization (19) within each cell 

using the Lagrangian method:

1) Compute the optimal Lagrangian multiplier

with Newton’s method;

2) Calculate the optimal time fraction:

3) Calculate the optimal instantaneous rate:

4) Calculate the optimal target SINR:
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Step 2: Determine transmit power cross multiple cells:

1)Determine all the concurrent transmission sets 

in a frame                           and their active

fractions of time                            ;

2) For each set     , calculate the component-wise

minimum transmit power vector
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Figure 1.1

Flowchart of the DSP method for the case δ ≤ 0 ( [1], c© 2011 IEEE).

In Step 1, each cell C(m) solves the convex optimization problem (1.19)
using the Lagrangian method. Let ϕ denote the Lagrangian multiplier of the
constraint in (1.19). The Lagrangian function is

L (t, ϕ) =
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

Gi(m)C(m)



+ ϕ





∑

i(m)∈A(m)

ti(m) − 1



 .

Since Problem (1.19) is convex, the necessary and sufficient conditions for an
optimal solution are the KKT conditions:

∇tL (t, ϕ) = 0 and ϕ





∑

i(m)∈A(m)

ti(m) − 1



 = 0.
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From ∇tL (t, ϕ) = 0, we have

ϕ∗ =
1

Gi(m)C(m)

(

exp

(

ri(m)

wt∗
i(m)

)(

ri(m)

wt∗
i(m)

− 1

)

+ 1

)

, (1.20)

where ϕ∗ is the optimal Lagrange multiplier and t∗
i(m) is the optimal time

fraction solution to (1.19). Given the parameters of ri(m), Gi(m)C(m), and
w, the optimal Lagrange multiplier ϕ∗ can be computed by the Newton’s
method, which guarantees superlinear convergence (faster than exponential)
[43]. After obtaining ϕ∗, the optimal time fraction t∗i(m) can be calculated by

solving (1.20). An efficient way to solve (1.20) is to tabulate the Lambert W
function [44], which is defined as

W (y) exp (W (y)) = y.

Then t∗
i(m) is given by

t∗i(m) =
ri(m)

w

(

W

(

ϕ∗Gi(m)C(m) − 1

e

)

+ 1

)−1

. (1.21)

The optimal instantaneous rate solution x∗
i(m) is:

x∗
i(m) =

ri(m)

t∗
i(m)

=

(

W

(

ϕ∗Gi(m)C(m) − 1

e

)

+ 1

)

w. (1.22)

Given the instantaneous rate solution x∗
i(m), the target SINR γ∗

i(m) then can

be determined by equation (1.10).
In Step 2, optimal power control is performed across multiple cells to

determine the optimal transmit powers for the users in each cell. We have
obtained the active time fraction t∗

i(m), the instantaneous rate x∗
i(m), and the

target SINR γ∗
i(m) of each user in each cell. Because the scheduling order in

each cell is determined by its arrival order, we can determine all the concurrent
transmission sets {Sk, 1 ≤ k ≤ K} and their active fractions of time {tk, 1 ≤
k ≤ K} in the frame. According to Proposition 1.1, we can compute the
component-wise minimum transmit power solutions of each set Sk that achieve
the target SINR vector γ∗

Sk
as in (1.7).

1.5.2 DSP Algorithm When δ > 0

When δ > 0, the circuit power is greater than the idling power, which is more
likely to happen in practice [18]. The intra-cell power minimization problem
for δ > 0 is given in (1.16). The optimal time fraction and the optimal in-
stantaneous rate solution to (1.16) are dependent on the inter-cell interference
power q(m). This motivates us to use an iterative method to minimize the
energy consumption in the multi-cell network. At the beginning of each it-
eration, we replace q(m) with the average interference power q̂(m) obtained



22 Book title goes here

Estimate           with the averaged 
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Step 2: Determine transmit power cross multiple cells:
1)Determine all the concurrent transmission sets in a frame

, and their active fractions of time                 ;
2) For each set     , calculate the component-wise minimum 

transmit power vector

3) Calculate the interference power vector

4) Calculate the total power consumption in the current iteration:
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Figure 1.2

Flowchart of the DSP method when δ > 0 ( [1], c© 2011 IEEE).
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from the previous iteration for every cell C(m). For the first iteration, the
estimated interference power q̂(m) is the averaged interference power of the
previous frame.

The flowchart of the DSP algorithm for the case of δ > 0 is shown in
Fig. 1.2. It involves an iteration between two steps. In Step 1, each cell C(m)
solves Problem (1.16) using the Lagrangian method, where q(m) is replaced
by q̂(m). The Lagrangian function of (1.16) is given by

L (t, ϕ) =
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q̂(m)
)

+ δ





+ ϕ





∑

i(m)∈A(m)

ti(m) − 1



 .

Similarly, we use the KKT conditions to solve formulation (1.16). Compared
with (1.20), (1.21), and (1.22), the optimal Lagrange multiplier ϕ∗, the optimal
time fraction t∗

i(m), and the optimal instantaneous rate x∗
i(m) under the case

of δ > 0 are modified to

ϕ∗ =
σ2 + q̂(m)

θGi(m)C(m)

(

exp

(

ri(m)

wt∗
i(m)

)(

ri(m)

wt∗
i(m)

− 1

)

+ 1

)

− δ, (1.23)

t∗i(m) =
ri(m)

w

(

W

(

(ϕ∗ + δ) θGi(m)C(m) −
(

σ2 + q̂(m)
)

e (σ2 + q̂(m))

)

+ 1

)−1

, (1.24)

and

x∗
i(m) =

ri(m)

t∗
i(m)

=

(

W

(

(ϕ∗ + δ) θGi(m)C(m) −
(

σ2 + q̂(m)
)

e (σ2 + q̂(m))

)

+ 1

)

w. (1.25)

In Step 2, given the active time fraction t∗i(m), the instantaneous rate x
∗
i(m),

and the target SINR γ∗
i(m) obtained in step 1, the concurrent transmission

sets {Sk, 1 ≤ k ≤ K} and their active fractions of time {tk, 1 ≤ k ≤ K}
are determined. The transmit power vector pSk

and the interference power
vector qSk

for each set Sk can be determined according to equations (1.7) and
(1.9), respectively. The total power consumption in the current iteration is
computed by

K
∑

k=1

tk





M
∑

m=1





∑

i(m)∈A(m)

(

(1− zi(m)(k))β + zi(m)(k)

(

α+
pi(m)(k)

θ

))







 ,

(1.26)
where zi(m)(k) (defined in (1.12)) denotes whether user i(m) is active in set
Sk, and pi(m)(k) is the mth element in the transmit power vector pSk

.
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We use the averaged interference power vector in the current frame to serve
as the estimate interference power in the next iteration, which is given by

q̂ =
K
∑

k=1

tkqSk
. (1.27)

Themth element in vector q̂ is the averaged interference power experienced by
the BS in cell C(m), q̂(m). Notice that in each iteration of the DSP algorithm,
the total power consumption is compared with last iteration, and the next
iteration starts if the total power consumption is reduced by more than or
equal to a percentage threshold ε ∈ (0, 1). If the improvement of the total
power consumptions is less than ε, the DSP algorithm terminates. The total
power consumption is monotonically decreasing and the DSP algorithm is
guaranteed to converge in a finite number of iterations §.

1.6 Simulation Results

We carry out extensive simulations to evaluate the performance of the pro-
posed DSP algorithm. We simulate a multi-cell network with a frequency reuse
factor of 3, i.e., one of every 3 cells use the same channel. The network topology
is shown in Fig. 1.3. There are a total of 7 cells using the same channel, and the
radius of each cell is 300 m. The users are uniformly distributed in each cell.
For a given number of users, we investigate 100 sets of random user positions
and present the averaged results. The session rate requirement of each user
is 70 kbps (48.52 knats/second). The bandwidth is 1 MHz. The frame length
is normalized to be 1 second. The maximum output power is 27.5 dBm. The
drain efficiency is 0.2. The noise power density is −174 dBm/Hz. The power
related parameters are cited from [33,38]. We adopt the distance-based path
loss model with a path loss exponent of 4.

1.6.1 Power Consumption Improvement

We evaluate the performance of the DSP algorithm proposed for both the two
cases where δ ≤ 0 and δ > 0. For δ ≤ 0, we only consider the transmit power
consumption and neglect the circuit power and the idling power consumption.
Then the algorithm in Section 1.5.1 is used. For δ > 0, the idling power and
the circuit power are set as 25 mW and 30 mW, respectively, and therefore
the algorithm in Section 1.5.2 is used. The improvement threshold ε is set as
0.001%.

§The maximum number of iterations is upper bounded by logε

(

Pmin
P1

)

, where P1 is

the total power consumption in the first iteration and Pmin is the minimum total power
consumption in the system.
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Figure 1.3

A multi-cell network with 7 cells operated on the same channel (the frequency
reuse factor is 3), and there are 23 users uniformly distributed in each cell.
The red circles are the base stations and the small blue circles are the users.
Here we only show the users which transmit on one particular channel ( [1],
c© 2011 IEEE).

We compare the power consumption performances of the following three
transmission policies:

1. Maximum power transmission: each user transmits with the same maxi-
mum transmit power.

2. Single-EOT: the Single-cell Energy Optimal Transmission policy proposed
in [33] ¶.

3. DSP: Decomposed Scheduling and Power control proposed in this chapter.

¶Reference [33] considered an isolated single cell network, where the inter-cell interference
power is 0. Here we consider multi-cell network extension. In order to make sure the target
transmission rate can be achieved when the actual interference power is unknown, we assume
the worst case inter-cell interference power. In this case, the BS assumes that the users in
the adjacent cells use maximum transmit power, and the worst case interference distance is
twice of the cell radius.
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Figure 1.4

Transmit power consumptions, δ = 0 and the algorithm in Section 1.5.1 is
used. The number of users in each cell ranges from 2 to 23 ( [1], c© 2011
IEEE).
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Figure 1.5

System total power consumptions, δ > 0 and the algorithm in Section 1.5.2
is used. The number of users in each cell ranges from 2 to 23 ( [1], c© 2011
IEEE).
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Figure 1.4 shows the system power consumptions of the above three al-
gorithms as a function of the number of users in each cell when only the
transmit power consumption is considered. Figure 1.5 shows the system to-
tal power consumptions including the transmit power, the circuit power, and
the idling power. As expected, DSP outperforms single-EOT, which in turn
outperforms the maximum transmit power policy in both Fig. 1.4 and Fig.
1.5. The system power consumptions of the Single-EOT and DSP algorithms
increase more slowly as the number of users increases. Because the connection
duration of a real time session is the same among these three algorithms, so
the system power reduction ratio is equivalent to the system energy reduction
ratio. For all simulation settings (i.e., the number of users per cell ranges from
2 to 23), compared with the maximum transmit power policy, DSP achieves a
power/energy reduction of more than 74% and 70% in Fig. 1.4 and Fig. 1.5,
respectively. The energy saving benefits become more significant when only
the transmit power consumption is considered.

In single-EOT, the BS trades off energy consumption and transmission
time from a single cell’s perspective. However, since BSs of different cells do
not cooperate in single-EOT, the power saving is still limited due to conser-
vative estimation of the inter-cell interferences. The DSP algorithm combines
the intra-cell average power minimization with inter-cell power control. As a
result, the system power/energy consumption reduction ratio can be further
improved compared with the Single-EOT algorithm: for all the simulated num-
bers of users per cell, DSP algorithm achieves a further system power/energy
reduction of more than 65% and 50% in Fig. 1.4 and Fig. 1.5, respectively.

1.6.2 Reduction of the Inter-cell Interference Power Level

We next investigate the interference power levels of the DSP algorithm when
δ > 0. Specifically, we focus on the interference power at the base station of
the central cell C(1) in the network topology in Fig. 1.3.

Figure 1.6 shows the average interference power as a function of the num-
ber of users in each cell. It is clear that DSP outperforms single-EOT, which in
turn outperforms the maximum transmit power policy. The maximum trans-
mit power policy not only consumes a large system power consumption but
also generates a large interference power at the base station. Compared with
the maximum transmit power policy, DSP achieves an interference power re-
duction of more than 35% for all the simulated number of users per cell. DSP
leads to a “win-win” situation: it reduces both the transmit power and the
inter-cell interference. Furthermore, we find that there is a tradeoff between
the interference power levels and the system work load in both the Single-
EOT and DSP algorithms. The interference power levels of the Single-EOT
and DSP increase as the number of users increases. When each cell has a small
number of users, each user has more time to transmit and thus the inter-cell
interference powers can be reduced significantly. However, in the maximum
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Averaged interference power at the base station of the central cell C(1), where
the number of users in each cell ranges from 2 to 23 ( [1], c© 2011 IEEE).
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transmit power policy, the interference power levels are similar as the number
of users changes.
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Figure 1.7

The fluctuation of the interference power at the base station of the central
cell C(1) within one time frame ( [1], c© 2011 IEEE).

We further investigate how the interference power changes over time. Fig-
ure 1.7 exhibits the interference power levels of a sample random network with
23 users uniformly distributed in each cell under the maximum transmit power
policy and the DSP algorithm. The x-axis represents the time within a single
frame. The y-axis is the interference power at the base station of cell C(1).
Figure 1.7 shows that the interference power at the base station fluctuates a
lot in the maximum transmit power policy; however the interference power
remains roughly constant within a time frame in the DSP algorithm.

Specifically, to measure the fluctuation of the interference power, we ex-
amine the coefficient of variation. Given the interference power vector that
contains all the interference powers at the base station of C(1) within a time
duration of one frame, the coefficient of variation is defined by the ratio be-
tween the standard deviation and the mean of the interference. A large coeffi-
cient of variation indicates a large fluctuation of the interference power within
the frame. Quantitatively, the coefficient of variation of the interference power
in Fig. 1.7 under the maximum transmit power policy is 0.1316. Under the
DSP algorithm, the coefficient of variation is reduced to 0.0146. This is be-
cause under the maximum transmit power policy, each user in the adjacent
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cells (C(2) to C(7)) uses the same transmit power. The interference power at
base station of C(1) heavily depends on the locations of the active users in
cells C(2) to C(7). If a user is at the cell boundary that is close to the base
station of C(1), it will generate a large interference. In the DSP algorithm,
after doing single-cell optimization, the user at the cell boundary is allocated a
larger fraction of time resource so that its instantaneous transmission rate re-
quirement can be reduced. Therefore, the transmit power of the cell-boundary
user can be reduced, which causes less interference to the base station of cell
C(1).

Table 1.2

The Averaged Coefficient of Variation of the Interference Power at the Base
Station of Cell C(1) ( [1], c© 2011 IEEE)

the number of
users in each cell

2 5 8 11 14 17 20 23

maximum power
transmission

0.107 0.111 0.120 0.130 0.133 0.125 0.128 0.125

DSP algorithm 0.001 0.002 0.004 0.006 0.008 0.010 0.013 0.016

Table 1.2 shows the averaged coefficient of variation when the number
of users in each cell changes ranges from 2 to 23. We find that for all the
simulated numbers of users per cell, the averaged coefficients of variation of
the DSP algorithm is very small, i.e., the interference power fluctuates very
little. These results verify our constant interference assumption, which was
the basis for the decomposition method proposed in this chapter. The DSP
algorithm has the effect of smoothing out the interference power received at
the base stations. This observation further indicates that the scheduling order
of the users in each cell is not important in the DSP algorithm. Our DSP
algorithm can alleviate the combinatorial part in formulation (1.13), which is
the most challenging part in solving the joint power control, rate control, and
scheduling problem.

1.6.3 Convergence Performance

When δ > 0, the DSP algorithm involves iterations between two alternative
steps. The total power consumption is reduced in each iteration. The DSP
algorithm terminates if the improvement in the current iteration is less than
a percentage threshold. Figure 1.8 shows the number of iterations that the
DSP algorithm needs for convergence. For each given number of links, we
investigate 200 random networks and present both the maximum numbers
and the average numbers of iterations of the DSP algorithm. We find that
for all the simulated networks with different number of users per cell, the
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average numbers of iterations for DSP to converge are around 3. The maximum
number of iterations of the DSP algorithm is no larger than 8. In Section 1.5.2,
we show that the DSP algorithm is guaranteed to converge. Figure 1.8 further
indicates that the DSP algorithm converges very fast.
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Figure 1.8

The maximum and average numbers of iterations for the DSP algorithm (δ >
0) to converge ( [1], c© 2011 IEEE).

1.7 Potential Research Directions

In this section, we will discuss two possible future research directions: the first
one is the energy conservation in cellular networks that support mobility; the
second one is the energy conservation problem in the wireless networks that
support non-real-time applications.

When users are moving, their channels are often fast time-varying. The
power solutions of the DSP algorithm may not satisfy the users’ target SINR
requirements, since the channel gains may have been changed before the al-
gorithm converges. One possible solution is to set an SINR margin to combat
the negative impact of mobility [45], i.e., increase the target SINR by a certain
amount. As a result, although the channel gains may have been changed, the
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users transmission rate requirements can still be satisfied if the SINR margin
is sufficiently large. For example, a margin of 3 dB is reserved for up-link
transmissions in mobile WiMAX assuming a frequency reuse factor of 3 [46].
It is clear that there is a trade-off between the SINR margin and the energy
efficiency: a small SINR margin may not guarantee the mobile users’ QoS
requirements; a large SINR margin may lead to unnecessary waste of energy
consumptions. Furthermore, the optimization of the SINR margin is affected
by several other factors, e.g., the moving speeds of the mobile users, the fre-
quency reuse factor, and the frame length. The energy-efficient transmission
in mobile multi-cell networks while providing QoS guarantees is an interesting
topic for further study.

In this chapter, we focus on the cellular networks that support real-time
application sessions (video/ voice sessions). The extension to the dynamic
systems that support non-real-time sessions (e.g., file transfers) is an inter-
esting yet challenging topic. The real-time sessions have a special feature: the
connection duration of a real-time session is independent of the allocated net-
work resources as long as its target rate requirement is satisfied; otherwise, the
session may be dropped. However, non-real-time sessions are delay-tolerant.
The holding time of a non-real-time session depends on the rate and power
allocation policy. For example, allocating a lower transmission rate to a file
transfer session will keep the corresponding user staying longer in the system.
The stationary distribution of the number of users depends heavily on the
rate and power control allocations. In addition, the QoS metric of non-real-
time sessions is less stringent than the real-time sessions, and thus the system
constraints are different. Therefore, the energy-conservation problem for non-
real-time sessions requires different formulation and solution techniques.

1.8 Conclusion

In this chapter, we study the problem of energy conservation of terminals in
a multi-cell TDMA network supporting bursty real-time sessions. The associ-
ated optimization problem involves joint scheduling, rate control, and power
control.

We propose a method that decomposes the overall problem into two sub-
problems: intra-cell energy optimization and inter-cell power control. This
decomposition method is guaranteed to find a feasible solution, albeit not
an optimal one. The decomposition is motivated and made simple by the
following observations:

1. The original optimization problem is too complicated to solve directly
online.

2. In cellular networks, the cells using the same frequency band are usually
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geographically separated by a distance. Interference is a strong function
of distance when the distance is small, but a weak function of distance
when the distance is large. Furthermore, after doing intra-cell averaged
power minimization, the base station trades off energy consumption with
transmission time. This will reduce the interference power generated by
the cell-boundary users. Thus, we could make the approximation that the
interference is constant when we make intra-cell time fraction allocations
to the users within a cell.

3. If the idle power is no less than the circuit power, or both are negligible,
then there is a “decoupling property”: the energy-optimal time alloca-
tions to individual users within each cell are independent of the inter-cell
interference (under the assumption that the interference stays constant
throughout a frame).

4. If the idle power is less than the circuit power, the sub-problems are cou-
pled. We then need to iteratively solve the two sub-problems until conver-
gence.
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