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Given a set of prices, the decided users can calculate the
unique demand vector that maximizes their payoffs, while the
undecided users have an infinite number of such vectors. In
particular, calculating the equilibrium maximizing demand
vectors for undecided users may require cooperation between
different providers, which may be challenging in practice.

On the other hand, the number of undecided users is small,
i.e., not larger than .J, and it does not grow with the number of
users. Future systems may have user action replaced by the ac-
tions of software agents in charge of connection and handover
between different providers. In this case, splitting over different
providers may become feasible. This is similar to soft handoff
(soft handover), a feature used by CDMA and WCDMA stan-
dards [18]. In addition, when the number of users is large, the
impact of a single user on the price may be small. Hence, oper-
ating at a nonequilibrium price as the result of the decisions of
a few undecided users may not have a great impact on the ex-
perienced quality of service, although the exact loss remains to
be quantified.

A. Related Work

In this paper, we have considered a linear-usage pricing
scheme, which has been widely adopted in the literature (e.g.,
[6] and [19]). Analyzing such pricing yields various insights:
For example, the existing TCP protocol can be interpreted as a
usage-based pricing scheme that solves a network utility max-
imization problem [6]. In practice, however, providers charge
monthly subscription fees. For both voice and data plans, these
subscriptions are sometimes combined with linear pricing
beyond a predefined usage threshold. Pure linear pricing based
on instantaneous channel conditions is generally not used, al-
though it has received renewed attention due to near-saturation
of some mobile networks (see, e.g., [20]). Recently, AT&T
introduced hybrid price plans, consisting of a flat rate fee for a
certain amount of data, and linear pricing beyond that limit [21].

There exists a rich body of related literature on using pricing
and game theory to study provider resource allocation and
interactions of service providers. The related research in the
wireless setting can be divided into several categories: optimiza-
tion-based resource allocation of one provider (e.g., [22]-[27]),
game-theoretic study of interactions between the users of one
provider (e.g., [28]-[31]), competition of different service
providers on behalf of the users (e.g., [32] and [33]), and
providers’ price competition to attract users (e.g., [34]-[42]).
Our current work falls into the last category.

In our work, we have simultaneously considered several fac-
tors that reflect diverse wireless network scenarios: An arbitrary
number of wireless providers compete for an arbitrary number
of atomic users, where the users are heterogenous both in chan-
nels gains and in willingness to pay. In related work where
providers price-compete to attract users [34], [36], [37], pur-
chasing a unit of resource from different providers brings the
same amount of utility to a user. Reference [43] considered
the routing and pricing problem in a wireline network, where
users choose the paths for their traffic (elastic or inelastic) by
trading off delay and cost. Reference [44] considered how mul-
tiple providers compete with different QoS architectures (pri-
ority or shared) for different types of applications (voice and
Web). Reference [45] considered N providers, each providing a
multiclass single queue service to the users. Each user chooses
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Fig. 9. Relationship between different concepts.

which queue and which class to join in order to maximize its
payoff by achieving a balance between data rate, delay, and pay-
ment. Reference [46] considered the competition between mul-
tiple ISPs and showed that a price war will happen if there are
many ISPs close by. In our work, a user’s utility depends on
the channel gain to the provider. Reference [47] considered the
competition between two cognitive virtual network operators
over the same pool of unlicensed wireless users. None of the
results in [43]-[47] considered the provider heterogeneity due
to channel conditions. In other work where the Wardrop equi-
librium concept is used (e.g., [17]), users are infinitesimal and
nonheterogenous; in our work, users are atomic and have dif-
ferent willingness to pay.

One of the early works that explicitly takes into account the
channel differences for different users on a line is [39], for in-
finitesimal users and distance-based channel gains. Recently, a
model similar to ours was used to treat a three-tier system [38],
although for specific utility functions. The multiple-seller mul-
tiple-buyer dynamics in a cognitive radio setting was studied
in [40] using evolutionary game theory. Finally, [41] and [42]
consider price competition in a multihop wireless network
scenario.

The design and proof of the decentralized algorithm were in-
spired by Chen et al. [13], with several key differences. First,
their work considers the optimal resource allocation of a single
OFDM cell. Second, it studies a system where each user has
a total power constraint. Third, there are often infinitely many
global optimal solutions in the model of [13]. Finally, our con-
vergence results are proved with a set of conditions that are less
stringent than those of [13].

VIII. CONCLUSION AND FUTURE WORK

We provide an overview of the relationship between different
concepts used throughout this work in Fig. 9.

We have studied the competition of an arbitrary number
of wireless service providers who want to serve a group of
atomic users who are heterogenous in both willingness to pay
and channel quality. We have modeled this interaction as a
two-stage wireless provider game and have characterized its
unique equilibrium. We have shown that the provider compe-
tition leads to a unique socially optimal resource allocation
for a broad class of utility functions and a generic channel
model. Our results show that some users need to purchase their
resource from several providers at the equilibrium, although
the number of such users is upper-bounded by the number of
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providers. We have also developed a decentralized algorithm
that converges to the equilibrium prices as well as the equilib-
rium demand vectors using only local knowledge.

Further work may include the study of fractional equilibria
with the goal of characterizing the losses that occur when un-
decided users are unable to split their resource demand in an
optimal way. It is also interesting to consider communication
models where users cause externalities such as interference to
each other.

APPENDIX

A. Proof of BGR Property 3

We first examine the properties of the optimal demand vector
of the SWO problem. We will express the SWO in terms of the
demand vector g only, by substituting directly (3) into (2). Let
p = [p1---py] be the vector of Lagrangian multipliers. The
Lagrangian for SWO is then

I J J I
DA AR (Q.i - flij) :
i=1

i=1 =1 j=1
(16)
It is easy to check that the SWO problem satisfies the Slater’s
condition [48], and thus the sufficient and necessary KKT con-
ditions for an optimal solution (g, p) are as follows:
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where with some abuse of notation we use 81’.7"(3“ 1) to denote
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The follomeg characterizes the relationship between the
prices of any two providers to which a user has strictly positive
demand. .

Recall the support set definition 7;(g;) = {j € J :q;; >0}
From (17), we see that ‘)" ( ) < minge s 25 Then from (18),
Ju; <L )

we can see that qL i > 0 only when —5 =

Pj
Cij

. Hence,

= minge s £ is a necessary condmon for ¢;; > 0 for all

LEIJEJ Then g;; > 0and gy >0 1mphes ::.’, =

minge 7 2% In particular, ¢;; > 0 and g;;» > 0 1mp11es '
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We now consider the BGR defined by the support sets
{J:}_, of multisource users. For any two edges (i,5) and
(4, k) of BGR, where ¢ is the user index and j, & are the provider
indices, g;; > 0 and ¢;;, > 0, so by (22), we have C” = pi

Suppose that a loop exists in BGR (refer to Fi 1g 10 for th1s
part of the proof). Then, a sequence of nodes i1, 71, %2, J2, - - -,
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Fig. 10. Bipartite graph representation loop.

In, Jn, i1 €xists, where ¢1,...,%, are the user nodes and
J1s....jn are the provider nodes, such that (i,jr) and
(jr—1,ix) are edges in BGR for k = 1, ... n (with iy defined as
i, ). We assume that the members of the sequence are distinct,
otherwise there is already a smaller loop inside. Since both

(ix, %) and (jx_1.41) are edges, then L_l = P’” L based
ik
on (22). A loop in the BGR implies
Civgn Cizgr Ciy_1in—2 Cinjn_1 _ Do P1 Prn-2 Pn-1
Ciyjr Ciggo Cir_1gn—1 Cinjn P1 P2 Pn—1 Pn

=1.

Ciyjn Cigiy Cip_1dpn—2 “nin_1

Since is a function of inde-

Ciyj) Cigdy  Cip_1in_1  Cinin
pendent continuous random variables, it is also a continuous
random variable itself. The probability that the product of inde-
pendent continuous random variables equals a constant is zero,
so we can conclude that a BGR has loops with probability zero.

In other words, a BGR has no loop with probability one.

B. BGR Algorithm

Let E be the set of edges, and Z and J be the set of all user
and provider nodes, respectively, present in the BGR. The de-
mand of multisource users can be found using Algorithm 1.

Algorithm 1: BGR decoding

1: For each multisource node i € 7 , calculate the
checksum P; «— z; R
2: For each provider j € J calculate the checksum
Sj = Q5 = Yiigygg G Vi €T
For each ¢;; > 0, add edge (i,j) to the edge set E
while E # 0 do
find a leaf node [ and associated edge (4, j)
if the leaf node is a user node then
= &
else
9: qj‘j — S
10: end if
11: R — (P,j — ql’-kjc,,;j) and Sj — (SJ — q;})
12:  remove edge (¢, 7)
13: end while

A A

We now give an informal description of an algorithm that
finds the optimal and unique values of ¢; for multisource users.
Since BGR has no loops, it is a (unrooted) tree. Hence, we can
run a simple iterative algorithm that removes a leaf node (node
with a single incoming edge) and its associated edge at each
iteration. We begin by finding a leaf node in the BGR. We then
determine the demand of the edge associated to the leaf node
either from BGR Property 1) or 2). Using this value, we update
the check-sum value of its parent node. Then, we remove the
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leaf node and the associated edge. This completes one iteration.
We repeat the process until there are no more edges in the graph.

The key for Algorithm 1 to work is that the BGR has no loops,
so a leaf node can always be found in line 5. Notice that in
the last iteration, there will be only one user node i and one
provider node 7 left connected by an edge with value ¢;;. The
checksums for these two nodes are P; and S;, which satisfy
P; = Sjc;j since P; = qf;¢;; and S; = g;;. Upon completion
of the algorlthm the demand of multisource users is uniquely
defined.

C. Proof of Lemma 15

We first prove that the set of positive demands does not
change over time on the invariant set. Roughly speaking, for a
user’s demand variable to become zero, it needs to have a neg-
ative derivative. Due to the form of the primal, this derivative
discontinuously becomes zero when the variable itself reaches
zero. On the other hand, derivatives of all demand variables are
coupled by a single equation at all times. For this equation to be
maintained, there needs to be a discontinuity somewhere else
in the opposite direction. But, this cannot happen due to the
form of the primal-dual system of equations. Technical proof
follows.

It suffices to show that any demand variable ¢;4(¢) > 0 such
that g7, > 0 cannot become zero on the invariant set for any du-
ration of time (we allow for the case where the variable gets
reduced to zero at a single point in time, and then starts in-
creasing again). We prove so by contradiction. Suppose that
¢ir.(to — 7) > 0 but g;1(t¢) = 0 for all 7 such that 0 < 7 < e,
where € is a small number.

We choose € small enough so that the derivative ;. (tg—7) <
0, which means that f5, < pr(to—7). Attg, either f}; < pr(to)
or fi, = pr(to).

We consider the first case: f7, < pw(fo). Then, there exists
some small ¢’ such that 7, < pp(tg+7'), forall 7/ < €. Then,
Gir(t +7') = K (ff, — pa(to +7'))E, = 0 (8). Then, if we
label by ¢,,.(to) = lim, _¢ Gix(to — 7) (the left derivative at £g)
and by qj{ (to) = lim, 0 ¢;x(to + 7) (the right derivative), we
have g, (to) = —c and ¢ (t) = 0, where ¢ > 0 (at to the gy
“jumps” from being negative to zero).

On the other hand, differentiating (13) with respect to time
yields Zjéj,: qi;‘(t[))cij = 0 and Zjej,; q;‘;(t())(” = 0.
Then, we have Z;jej;,\k qlfj(t())cij = —q;.(to)cir > 0 and
2 jeTk g;(to)ei; = 0. In other words, to compensate
for the discrete jump from ¢, (to)cir < 0 to zero (a finite
positive increase), there needs to be a finite negative jump for
> jegak Giy(to)ci;. However, since all p} s are continuous and
from (8), it can be seen that there are no negative jumps in ¢;;.
In other words, 3_ ¢ .\ q;’;(t())cij =Y jeqk 4ij(to)eij >0,
which is a contradiction.

We now consider the second case: f};, = px(to). From f}, =
pj forall i’ € Ty, it follows that f7, < pi(to — 7). Thus, the
demand of clients of provider % is shrinking, which means that
pr(to — 7) decreases as T approaches zero (9). Hence, pr (o) <
(), which means that py (to + 7') > f7; forall 7/ < ¢, for some
small €. Thus, §;x(to—7) < 0 and ¢;(to+7") > 0, which with
gir(to) = 0 and ¢;1(to) = 0 gives that ;1 (¢t) does not become
zero for a finite period of time.

Therefore, a nonzero g;; stays nonzero. Suppose now that
g;;(t) = 0 but ¢;;(t + 75;) > 0 for some 7;; > 0. After

time 7;,, variable ¢;; becomes nonzero and stays that way for-
ever (according to the argument we made earlier in the proof).
Then, no g;; escapes from the boundary after time 47, where

T = max; ; Tij.

Now we prove the second part of the Lemma. Similar to the
previous argument, once the p;(#) > 0 on the invariant set,
p;(t+7) > 0forall 7 > 0. It remains to show that p;{¢) > 0 on
the invariant set. However, if p;(t) = 0 were true, then ¢;; > 0
would imply lim;_., ¢;;(¢t) = 0, which would violate (13).
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