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Abstract

We present distributed power control algorithms for a wireless peer-to-peer net-
work with multiple channels per user. Users exchange “price” signals that indicate
the negative effect of interference at the receivers in each channel. Given this set of
prices, each transmitter chooses a power allocation across channels to maximize its
net benefit (utility minus cost), subject to a total power constraint. We consider
two specific algorithms for power and price updates, and establish global conver-
gence for both algorithms to the unique globally optimal power allocation for a
class of concave user utility functions. When the utility functions represent achiev-
able rates, global convergence is not guaranteed; however, we show numerically
that the proposed power control algorithms achieve much better performance than
iterative water-filling, in which users maximize their own rates without exchanging
price information.

1 Introduction

Interference in a wideband wireless network can be mitigated through the use of power
control strategies that distribute power unevenly across available channels according to
measured activity. Example scenarios include interference avoidance in wireless ad hoc
networks with frequency-selective channels [1], power allocation across multiple cells in
an Orthogonal Frequency Division Multiplexing (OFDM) network [2], and spectrum
management in digital subscriber lines with crosstalk [3]. In each of those scenarios,
power can be allocated across frequencies to minimize interference and optimize overall
network performance.

Here we consider power control in a wideband ad hoc (peer-to-peer) network. Ideally,
what is desired is a distributed algorithm, which does not rely on a centralized infrastruc-
ture, and has complexity that scales linearly with the network size. In this paper, we
present distributed power control algorithms, motivated by the desire to maximize total
utility summed over all users. Namely, each user is assigned a utility function, which
is increasing and strictly concave in the received Signal-to-Interference plus Noise Ratio
(SINR). Allocating power across users and channels to maximize total network utility is
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grant DAAD19-99-1-0288, and NSF CAREER award CCR-0238382.
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typically difficult due to the effect of interference across channels, which can make the
optimization objective non-concave. In addition, the total power constraints introduce
dependencies across the power that can be allocated to different channels for each user.

To mitigate interference, we present power control algorithms in which the users
exchange “price” signals that represent the marginal loss in utility due to a marginal in-
crease in interference in a particular channel. Each transmitter then determines the power
allocation across all channels autonomously by maximizing the user’s surplus (utility mi-
nus cost), where the interference prices are used to compute the cost. The interference
prices internalize the associated negative externalities among users, and therefore can
be interpreted as a type of Pigovian Tax [4]. This is different from many previously
proposed pricing mechanisms for resource allocation, both in wire-line networks (e.g. [5])
and wireless networks (e.g. [6,7]), where prices are Lagrange multipliers for a constrained
resource, or heuristic signals to coordinate the behavior of different users.

In related work, we have characterized the convergence and performance of a distrib-
uted pricing mechanism for power control in a single-channel ad hoc network [8], and in
a multi-channel ad hoc network where each user can choose only one channel on which
to transmit [9]. In this paper, we consider the case where users can allocate power across
all channels. We present two algorithms, a primal algorithm and a dual algorithm. In
the primal algorithm, each transmitter determines the power allocation across all chan-
nels to maximize its surplus, subject to a total power constraint, taking into account
the interference prices for each channel. The dual algorithm is based on the technique
of Lagrangian relaxation, and allows us to decompose the network optimization problem
into several subproblems, one for each channel. The dual variables are then updated to
enforce the total power constraints.

We show that both algorithms converge to the globally optimal power allocation for
a class of utility functions that are “sufficiently” concave. This condition is not satisfied
when the users’ utility functions correspond to achievable rates, so that convergence to the
global optimum is not guaranteed in general. In that case, we show that the algorithms
converge for a two-user two-channel network, and for a network with an arbitrary number
of users, but with a constraint (upper bound) on cross-channel gains. We also present
numerical results, which show that the pricing algorithms perform better than iterative
water-filling [10] (in both low and medium SINR regimes), where users maximize their
individual rates autonomously without exchanging information.

2 System Model

We consider a stationary wireless network with a set of M = {1, ..., M} distinct trans-
ceiver pairs. Each pair consists of one transmitter node and one receiver node. Although
we focus on a peer-to-peer scenario, the model considered may also apply to certain
multi-hop scenarios in which a particular schedule of transmissions has been determined
by an underlying routing and MAC layer protocol. We will use the terms “pair” and
“user” interchangeably. Each user i ∈ M is able to transmit over a set of K = {1, ..., K}
nonoverlapping channels. Over the time-period of interest, we assume that the channel
gains are fixed and that the users want to transmit continually. For channel k ∈ K, the
gain between user i’s transmitter and user j’s receiver is denoted by hk

ij.
1 An example of

1Note that in general hk
ij 6= hk

ji, since the latter represents the gain in channel k between user j’s
transmitter and user i’s receiver.
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Figure 1: A multichannel network with three users (pairs of nodes) and K = 2 channels. Ti

and Ri denote the transmitter and receiver for user i, respectively.

a network with three pairs of nodes and two channels is shown in Fig. 1.
User i is assigned the utility function

ui (γi (p)) =
∑

k∈K

uk
i

(

γk
i

(

pk
i , p

k
−i

))

,

where uk
i is an increasing and strictly concave function of user i’s SINR on channel k,

γk
i

(

pk
i , p

k
−i

)

=
pk

i h
k
ii

nk
0
+
∑

j 6=i h
k
jip

k
j

. (1)

Here, nk
0

is the background noise power for channel k, pk
i is user i’s transmission power

on channel k, and pk
−i =

(

pk
j , j ∈ M, j 6= i

)

is the vector of powers across all users except
user i on channel k. We denote the vector of powers across users for channel k by
pk =

(

pk
i , i ∈ M

)

=
(

pk
i , p

k
−i

)

, and the vector of powers across channels for a particular
user i by pi =

(

pk
i , k ∈ K

)

. Finally, p = (pi, i ∈ M) =
(

pk, k ∈ K
)

denotes the power
profile across all users and channels. Our objective is to find a p that solves:

max
{p:pi∈Pi,∀i∈M}

∑

i∈M

∑

k∈K

uk
i

(

γk
i

(

pk
))

, (P1)

where user i’s power is constrained to lie in the set

Pi =

{

pi

∣

∣

∣

∣

∑

k∈K

pk
i ≤ Pmax

i , pk
i ≥ Pmin

i ≥ 0,∀k ∈ K

}

.

Let P = Πi∈MPi denote the set of feasible power profiles, p.
In what follows, we will take as particular examples the rate utility, uk

i

(

γk
i

(

pk
))

=
θi log

(

1 + γk
i

(

pk
))

, and the log utility uk
i

(

γk
i

(

pk
))

= θi log
(

γk
i

(

pk
))

, where the θi’s
can represent user-dependent priorities. Of course, the log-utility approximates the rate
utility in the high SINR regime. Although the rate utility is strictly concave in γk

i , the
objective in Problem P1 may not be concave in p. However, it is easy to verify that
any locally optimal p∗ must satisfy the following Kuhn-Tucker conditions (Prop. 3.3.1
of [11]):
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Lemma 1 For any locally optimal solution p∗ of Problem P1, there exist unique Lagrange
multiplier vectors µ∗ = (µ∗

i , i ∈ M) and λ∗ =
(

λk∗
i , i ∈ M, k ∈ K

)

such that for all i ∈ M
and k ∈ K,

(

∂uk
i (γ

k
i (pk

i ,pk
−i))

∂pk
i

+
∑

j 6=i

∂uk
j (γ

k
j (pk

j ,pk
−j))

∂pk
i

)∣

∣

∣

∣

∣

pk=pk∗

= µ∗
i − λk∗

i , (2)

where λk∗
i , µ∗

i ≥ 0, µ∗
i (
∑

k∈K pk∗
i − Pmax

i ) = 0, and λk∗
i

(

Pmin

i − pk∗
i

)

= 0.

Let πk
j

(

pk
)

= −
∂uj(γj(pk

j ,pk
−j))

∂Ik
j (pk

−j)
, where Ik

j

(

pk
−j

)

=
∑

l 6=j hk
ljp

k
l is the total interference

received by user j in channel k. Here, πk
j

(

pk
)

is always nonnegative and represents user
j’s sensitivity to its current interference level, i.e., how much its utility would increase if
the interference is decreased by one unit. Equation (2) can then be written as

(

∂uk
i (γ

k
i (pk

i ,pk
−i))

∂pk
i

−
∑

j 6=i

πk
j

(

pk
)

hk
ij

)∣

∣

∣

∣

∣

pk=pk∗

= µ∗
i − λk∗

i ,∀i ∈ M,∀k ∈ K. (3)

Each πk
j

(

= πk
j

(

pk
))

can be viewed as a “price ”that each user i 6= j must pay for
each unit of interference generated at user j on channel k. Condition (3) can then be
interpreted as a necessary and sufficient optimality condition for determining the power
vector pi ∈ Pi, which maximizes user i’s surplus function

si

(

pi,p−i; π−i

)

=
∑

k∈K

(

uk
i

(

γk
i

(

pk
i , p

k
−i

))

− pk
i

∑

j 6=i

πk
j h

k
ij

)

, (4)

given p−i =
(

pk
−i, k ∈ K

)

and prices π−i =
(

πk
−i, k ∈ K

)

. The surplus is user i’s utility
minus its payment for the interference it generates. For each channel, the payment is
user i’s transmit power times a weighted sum of other users’ prices, where the weights
are the channels gains between the ith transmitter and the other users’ receivers. The
payment can viewed as compensation to other users for the interference associated with
the transmission.

3 Asynchronous Distributed Pricing Algorithms

The pricing interpretation of the KKT conditions motivates the following multi-channel
asynchronous distributed pricing (ADP) algorithms, in which users iteratively announce
prices and update their transmit power allocations to achieve a solution that satisfies
Lemma 1. We present two algorithms, a primal algorithm and a dual algorithm, and
show the convergence of both under various utility and network assumptions. Most proofs
can be found in [12] and are omitted here.

3.1 Primal ADP (PADP) Algorithm

In the PADP algorithm, each user i updates its power allocation to maximize its surplus
as in (4); formally, we represent this via the update function,

Wi

(

p−i,π−i

)

= arg max
pi∈Pi

si

(

pi,p−i,π−i

)

.
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Each user also updates each price πk
i according to

Ck
i

(

pk
)

= −
∂uk

i

(

γk
i

(

pk
i ; p

k
−i

))

∂Ik
i

(

pk
−i

) =
∂uk

i

(

γk
i

(

pk
i ; p

k
−i

))

∂γk
i

(

pk
i ; p

k
−i

)

(

γk
i

(

pk
i ; p

k
−i

))2

pk
i h

k
ii

.

The users iteratively update their prices and power allocations according to these func-
tion. We allow these updates to be done asynchronously, both across users as well as
between price and power updates for a given user. To be precise, for each user i, let Ti,p

and T k
i,π, k ∈ K be K+1 sets of infinite positive time instances at which user i updates its

power allocation and price for channel k, respectively.2 The complete PADP algorithm
is then specified in Algorithm 1 (t− denotes the time immediately before t).

Algorithm 1 PADP Algorithm

1. Initialization: at t = 0, each user i ∈ M chooses some initial power pi (0) ∈ Pi and
price πi (0) ≥ 0.

2. Power Update: At each t ∈ Ti,p, user i updates its power allocation according to
pi (t) = Wi

(

p−i (t
−) ,π−i (t

−)
)

.

3. Price Update: At each t ∈ T k
i,π, user i updates its price on channel k according to

πk
i (t) = Ck

i

(

pk (t−)
)

.

It can be seen that in this algorithm each user’s updates only require that user have
the following limited information for each channel k: its own SINR γk

i and channel gain
hk

ii, channel gains hk
ij for all j 6= i, and other users’ prices πk

−i. The γk
i and hk

ii can be
measured at its receiver and feed back to the transmitter. The adjacent channel gains
hk

ij account for only 1/M of the total channel gains, and can be measured by having each
receiver periodically broadcast a beacon; assuming reciprocity, the transmitters can then
measure these channel gains. The price information could also be periodically broadcast
through these beacons.

When this algorithm converges, it can be shown that:

Lemma 2 A power profile p∗ satisfies the KKT conditions of Problem P1 if and only if
(p∗,C (p∗)) is a fixed point of the PADP algorithm.

Next, we study the convergence of this algorithm for different classes of utility func-
tions. The first class we consider is defined in terms of their coefficient of relative risk
aversion, Gk

i

(

γk
i

)

= −γk
i uk′′

i (γk
i )/uk′

i (γk
i )). This quantity is used in economics [4] and

measures the relative concaveness of uk
i

(

γk
i

)

(a larger value indicates a “more concave”
function). Let γmin

i = min{γk
i (pk) : p ∈ P ,∀k ∈ K} and γmax

k = max{γk
i (pk) : p ∈

P ,∀k ∈ K} for all user i ∈ M. Our first class of utility functions is defined to be those
for which Gk

i

(

γk
i

)

∈ [1, 2] (e.g., uk
i

(

γk
i

)

= θi log
(

γk
i

)

), in which case the objective func-
tion of Problem P1 can be shown to be strictly concave in the logarithmic transformed
variables y = log (p) under mild conditions. Thus, the KKT conditions become neces-
sary and sufficient for the unique optimal solution to Problem P1; in this case the the
PADP algorithm has a unique fixed-point that is optimal. With the restriction to only
K = 2 channels, the next theorem states that the PADP algorithm will globally converge
to this fixed point; we will discuss more K > 2 channels in Section 3.2.

2We do not require that updates be asynchronous; i.e. synchronous updates can simply be viewed as
a special case.
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Theorem 3 Consider a network with only two channels. If for any i ∈ M, Pmin

i > 0,
and Gk

i

(

γk
i

)

∈ [a, b] for all γk
i ∈

[

γmin

i , γmax

i

]

, where [a, b] is a strict subset of [1, 2],
then Problem P1 has a unique optimal solution to which the PADP algorithm globally
converges.

On the other hand, if Gk
i

(

γk
i

)

∈ (0, 1) (e.g., rate utility uk
i

(

γk
i

)

= θi log
(

1 + γk
i

)

),
then the objective of Problem P1 might not be concave in p (or y = log (p)), and there
may exist multiple local optimal solutions. As an example, we will next consider the
performance of the PADP algorithm for the class of rate utilities. We first show that the
PADP can still converge in this case with proper initialization, even if Problem P1 has
multiple local optimal solutions. Let the maximum possible price of user i in channel k
be π̄k

i = arg max{p:pi∈Pi, ∀i∈M} πk
i

(

pk
)

, which is finite for rate utilities.

Theorem 4 Consider a network with only two users and two channels with rate utility
functions. If users initialize with (p1

1
(0) , p2

1
(0) , p1

2
(0) , p2

2
(0) , π1

1
(0) , π2

1
(0) , π1

2
(0) , π2

2
(0))

equal to

(

Pmax

1
− Pmin

1
, Pmin

1
, Pmin

2
, Pmax

2
− Pmin

2
, π̄1

1
, 0, 0, π̄2

2

)

, or
(

Pmin

1
, Pmax

1
− Pmin

1
, Pmax

2
− Pmin

2
, Pmin

2
, 0, π̄2

1
, π̄1

2
, 0
)

,

then the PADP algorithm converges.

Theorem 4 can be generalized to any utility function with Gk
i

(

γk
i

)

∈ (0, 1] (for details,
see [12]). To prove Theorems 3 and 4, we can map the PADP algorithm to the myopic best
response updates of a “fictitious power-price control game,” and show the convergence
using supermodular game theory. Both results are restricted to the case of two channels
in order for the resulting game to satisfy the requirements of a supermodular game.
However, the simulation results in Section 4 show that the PADP algorithm converges in
more general cases.

On the other hand, when the interferences are small enough, we can show the the
convergence of the PADP algorithm for arbitrary number of channels using a contrac-
tion mapping argument. To simplify the discussion, here we only consider a particular
synchronous update scheme, where Ti,p = Tj,p and T k

i,π = T k′

j,π for any i 6= j and k 6= k′,
i.e., the power updates and price updates are each done synchronously. For j 6= i, let
αk

ji = hk
ji/h

k
ii be the normalized interference coefficient for user i from user j.

Theorem 5 In a two-user K-channel network with symmetric (θ1 = θ2) rate utilities,
there exists some constant ξ > 0 such that the PADP algorithm with synchronous up-
dates globally and geometrically converges to the unique optimal solution of Problem P1,
whenever

max
i∈{1,2},j 6=i,k∈K

αk
ji ≤ ξ.

The value ξ can be explicitly calculated and depends on the number of channels, K,
the normalized noise, nk

i = nk
0
/hk

ii, and the power constraints of both users. This small
interference condition can be satisfied when the receiving nodes are far enough away from
any interfering transmission. We believe that the proof technique can be generalized to
the case of more than two users as well as asymmetric utility functions.
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3.2 Dual ADP (DADP) Algorithm

The DADP algorithm is based on the idea of relaxing each user i’s total power constraint
in Problem P1 by introducing a dual price µi, so that the objective function of Problem
P1 becomes

∑

k∈K

∑

i∈M

(

uk
i

(

γk
i

)

− µip
k
i

)

. For a given µ = (µi, i ∈ M), the resulting
problem is separable across channels, and so can be decomposed into K subproblems,
one for each channel k, given by

max
{pk:pk

i ∈P
′

i,∀i}

∑

i∈M

uk
i

(

γk
i

(

pk
))

− µip
k
i , (P2)

where P ′
i =

[

Pmin

i , Pmax

i

]

. A single-channel version of the PADP algorithm can then be
applied to the subproblem P2 for each channel k, where the price update, Ck

i

(

pk
)

is the
same as in the PADP algorithm, and the power update is modified to be

Wk
i

(

pk
−i, π

k
−i, µi

)

= arg max
pk

i ∈P
′

i

(

uk
i

(

γk
i

(

pk
i , p

k
−i

))

− pk
i

(

∑

j 6=i

πk
j h

k
ij + µi

))

,

which includes both the cost due to interference and user i’s dual price3. For a given
µ, any fixed point of this algorithm will satisfy the KKT conditions of subproblem P2.
The dual prices µ are then periodically updated to enforce the total power constraints.
The complete DADP algorithm is given in Algorithm 2, where T k

i,p, T k
i,π, and Ti,µ are

unbounded sets of positive time instances at which each user i updates pk
i , πk

i , and µi,
respectively, and κ > 0 is a small constant.

Algorithm 2 DADP algorithm

1. Initialization: at t = 0, each user i ∈ M chooses some initial power pi (0) ∈ Pi,
interference price πi (0) ≥ 0 and dual price µi (0) ≥ 0.

2. Dual Price Update: at each t ∈ Ti,µ, user i updates its dual price according to

µi(t) = max

{

µi

(

t−
)

+ κ

(

∑

k∈K

pk
i (t

−) − Pmax

i

)

, 0

}

.

3. Power Update: at each t ∈ T k
i,p, user i updates its power on carrier k according to

pk
i (t) = Wk

i

(

pk
−i(t

−), πk
−i(t

−), µi

(

t−
))

.

4. Interference Price Update: at each t ∈ T k
i,π, user i updates its interference price on

carrier k according to
πk

i (t) = Ck
i

(

pk(t−)
)

.

It can be seen that any fixed point of the DADP algorithm will satisfy the KKT
conditions of Problem P1. We analyze the convergence of this algorithm under two
simplifying assumptions:

A1) Synchronous updates: the dual prices are updated synchronously across all users.

3To differentiate, we call πk
i (for all i and k) the interference prices.
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A2) Separation of time-scales: between any two updates of the dual prices, the updates
in steps 3 and 4 of the algorithm converge to a fixed point.

Assumption A1 is for analytical convenience and can likely be relaxed using techniques
as in [13]. Steps 3 and 4 of the algorithm are implementing the single channel version of
the PADP algorithm on each channel. If each utility function satisfies the conditions as
in Theorem 3, these updates will converge to a fixed point for any fixed µ. However, a
large number of updates may be required for convergence; hence, A2 implies that there
are many of these updates between any two dual price updates. Numerical results in
Sect. 4 show that convergence can still be obtained when this assumption is dropped.

Theorem 6 If for all i ∈ M and k ∈ K, Pmin

i and uk
i (γ

k
i ) satisfy the conditions in

Theorem 3; then under assumptions A1 and A2, for small enough step size κ the DADP
algorithm globally and geometrically converges to the unique optimal solution to Prob-
lem P1.

The proof of this is based on showing that under these assumptions the dual price
update can be viewed as a distributed gradient projection algorithm [11] for solving a
dual problem of Problem P1 and then proving the convergence of this algorithm.

4 Numerical Results

We illustrate the performance of the PADP and DADP algorithms through some numer-
ical results. In all experiments, we let Pmax

i = 1, Pmin

i = 0, and nk
0

= 10−2. The channel
gains are modeled as hk

ij = d−4

ij αk
ij, where dij is the distance between transmitter i and

receiver j, and the αk
ij’s are independent, unit-mean exponential random variables that

model frequency-selective fading across channels.
Figure 2 illustrates the convergence of the PADP and DAPD algorithms. The trans-

mitters are uniformly placed in a 10m×10m area, and the receivers are randomly placed
within a 6m×6m square centered around the corresponding transmitters. Users are ini-
tialized with random powers and prices. The left subfigure shows utility versus iterations
for the PADP algorithm in a network with 10 users and 20 channels. Each user has a rate
utility function ui (γi) =

∑

k∈K log
(

1 + γk
i

)

, and the curves correspond to different users.
Although convergence is not guaranteed, according to Theorems 4 and 5, these results
show that for the scenario simulated the algorithm converges within a few iterations. (An
iteration represents one round of synchronous update of powers and prices.)

The right subfigure of Figure 2 shows normalized utility versus number primal up-
dates for the DADP algorithm in a network with 50 users and 16 channels. For this set
of plots the users have logarithmic utility functions ui (γi) =

∑

k∈K log
(

γk
i

)

, the dual
update stepsize is κ = 0.05, and each point is averaged over 100 random topology real-
izations. All users synchronously update their dual prices, which marks a dual iteration.
During each dual iteration, the users synchronously perform both steps (3) and (4) in
Algorithm 2, which we refer to as a primal update. The figure shows plots corresponding
to different numbers of primal updates within each dual iteration. The results show that
the performance is insensitive to this parameter. Hence the separation of time scales, as-
sumed in Theorem 6, which implies a large number of primal updates per dual iteration,
is not necessary for convergence in practice.

Figure 3 compares the performance of the PADP algorithm with the iterative water-
filling (IWF) algorithm [10], in which each transmitter allocates power to maximize
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Figure 2: Algorithm convergence: Left : PADP, right : DAPP

the rate without exchanging information. In this example, each user has a rate utility
function, and the placement of transmitters and receivers is the same as in Figure 2. For
the left subfigure, there are two users and 20 channels. The light (yellow) bar denotes the
allocated power, and the dark (blue) bar denotes the normalized noise plus interference
(

nk
0
+ hk

jip
k
j

)

/hk
ii, truncated to 0.2. For this example, the mean value of the interference

channel gains
(

hk
ji

)

is half the mean value of the direct channel gains
(

hk
ii

)

. In this case,
the PADP algorithm assigns non-overlapping channels, whereas IWF assigns overlapping
channels, which leads to significant interference.

The right subfigure shows averaged utility per user (averaged over 100 channel real-
izations) versus the number of users. Different curves are shown for different numbers
of channels. When the network has only two channels, there is a large amount of inter-
ference on each channel (low SINR), and the PADP performs substantially better than
IWF (e.g., a factor of three in averaged utility). As the number of channels increases,
this performance gain diminishes, although it is still significant with 10 channels (around
50%).
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Figure 3: Performance of the PADP and IWF algorithms. left : power allocations for two users

and 20 channels; right : averaged utility versus number of users.

5 Conclusions

We have presented two distributed power control algorithms for multi-channel ad hoc
networks. The algorithms are based on exchanging price signals within each channel
that measure the associated interference externalities. The DADP algorithm converges

9



to the unique global optimal power allocation provided that the utility functions are
“sufficiently” concave. Convergence of the PADP algorithm is more difficult to establish
in general, although numerical results have shown that the algorithm converges with
rate utility functions most of the time. Our numerical results also show that conver-
gence of the DADP algorithm depends primarily on the total number of primal updates,
and is insensitive to the number of primal updates per dual iteration. Here we have
focused on a static setting, where the communicating pairs and channel conditions are
fixed. An interesting future direction is to consider distributed power control in dynamic
environments.
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